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Abstract. We discuss the VC-dimension of a class of multiples of integers and primes
(equivalently indicator functions) and demonstrate connections to prime counting func-
tions. Additionally, we prove limit theorems for the behavior of an empirical risk min-
imization rule as well as the weights assigned to the output hypothesis in AdaBoost
for these “prime-identifying” indicator functions, when we sample mn i.i.d. points uni-
formly from the integers {2, . . . , n}.

1. The VC-dimension of a class of multiples of primes

Let N denote the positive integers. Recall that for functions f , g : N → (0, ∞) we
say f (n) = ω(g(n)) if limn→∞ f (n)/g(n) = ∞. Consider a learning problem with
domain X = {n ∈ N : n ≥ 2}, label set {0, 1} and hypothesis class H′ := {hp : p ∈
X , p is prime}, where

hp(x) =

{
1 if x ≤ p or p - x,
0 otherwise.

We have hp(x) = 0 if and only if x is divisible by p—i.e., p | x and x > p. Note that
if x is prime then hp(x) = 1. Another characterization is that hp(x) = 0 if and only if
x ∈ pN \ {p} = {2p, 3p, 4p, . . . }. In this way, our efforts can be seen as assessing the
sample complexity of a hypothesis class of indicator functions associated to the Sieve
of Erastosthenes. A notable study containing results related to our investigations of
VC-dimension is [2].

A class of indicator functions G =
{

g : X → {0, 1}
}

is said to shatter a set C =
{c1, . . . , c`} ⊂ X if the cardinality∣∣∣{(g(c1), . . . , g(c`)) : g ∈ G

}∣∣∣ = 2`.

The VC-dimension of G, denoted VCdim(G) is the size of the largest set that G shatters.
See [4] for more details. To begin, we will show that H′ can shatter a set of size 2.
Let C = {6, 10}. Then (h2(6), h2(10)) = (0, 0), (h3(6), h3(10)) = (0, 1), (h5(6), h5(10) =
(1, 0) and (h7(6), h7(10)) = (1, 1). Notice there are 22 − 1 = 3 unique prime factors in
6 = 2 · 3 and 10 = 2 · 5. Thus, VCdim(H′) ≥ 2. We will now show that VCdim(H′) ≥ n
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for any n ≥ 3. Let us enumerate the first 2n primes p1 < p2 < · · · < p2n and recognize
that

2n =
n

∑
k=1

(
n
k

)
.

Each ci will be the product of 2n−1 primes. Label all 2n subsets of {1, . . . , n} in some
fashion, e.g. A1, . . . , A2n . We may now form ci, i = 1, . . . , n as follows:

(1) ci :=
2n

∏
k=1

p
1Ak

(i)
k .

We may take a second to see that

2n

∑
k=1

1Ak(i) =
n−1

∑
j=0

(
n− 1

j

)
= 2n−1,

as i must be in each set and there are (n−1
j ) other options for a set containing index i of

cardinality j + 1. For simplicity, denote hpk = hk, k = 1, . . . , 2n. We aim to prove that
hk(ci) = 1− 1Ak(i). By definition, hk(ci) = 0 if and only if pk | ci and ci > pk. However,
when n ≥ 2 then ci is the product of 2n−1 ≥ 2 primes, so that if pk | ci, then ci > pk.
Hence, hk(ci) = 0 if and only if pk | ci. However, pk | ci if and only if i ∈ Ak, as then and
only then will pk appear in ci’s factorization. Thus, hk(ci) = 0 if and only if 1Ak(i) = 1,
or hk(ci) = 1− 1Ak(i). We have thus proved that H′ shatters a set of size n for all n ≥ 2,
hence

VCdim(H′) = ∞.

All finite classes have finite VC-dimension, hence the infinitude of the set of primes
is equivalent to VCdim(H′) = ∞. Thus, we have established a theorem which relates
Euclid’s second theorem to the VC-dimension of the class H′.

Theorem 1.1. The following statements are equivalent:

(i) The set of primes is infinite

(ii) VCdim(H′) = ∞

We have two interesting corollaries as a result of the above. We state the first here.

Corollary 1.2. Suppose that H′ shatters a set {c1, . . . , cn}. Then ci is divisible by the product
of 2n−1 distinct primes and ∏n

i=1 ci has at least 2n − 1 distinct prime factors

Proof. If H′ shatters {c1, . . . , cn}, then we have for each subset Ak of {1, . . . , n} that(
h(c1), . . . , h(cn)

)
=
(

1− 1Ak(1), . . . , 1− 1Ak(n)
)

,
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for some h ∈ H′, which we assign a unique prime pjk . Therefore, h(ci) = 0, i.e. pjk | ci
and ci > pjk if and only if i ∈ Ak. As a result of the shattering,

(2) ci > max
k

p
1Ak

(i)
jk

,

and

(3)
2n

∏
k=1

p
1Ak

(i)
jk

| ci.

The last statement in the corollary follows from the fact that when Ak 6= ∅, then there
exists some i ∈ Ak such that pjk | ci. �

Note that (2) is automatically satisfied by (3), as all primes are at least 2 and ∏2n

k=1 p
1Ak

(i)
jk

consists of precisely 2n−1 primes. Hence, if there exists primes pj1 , . . . , pj2n such that (3)
holds, then (2) is satisfied, so that hpjk

(ci) = 0 for all k such that i ∈ Ak.
Now suppose that we have the class H′≤n = {hp : p ≤ n}, and a set C of size

j(n) = blog2 π(n)c, where C = {c1, . . . , cj(n)} and each ci defined as at (1). We may
shatter C as there are 2j(n) ≤ π(n) primes available to us. Additionally |H′≤n| ≤ π(n).
Thus, we have an interesting corollary to Theorem 1.1.

Corollary 1.3. For the hypothesis class H′≤n = {hp : p ≤ n}, we have

VCdim(H′≤n) = blog2 π(n)c.

One thing that we may conclude from Theorem 1.1 is that the class H′ of functions
which cross out the multiples of primes (resp. positive integers greater than 1), is not
uniformly learnable (in a probably approximately correct sense)—cf. [4].

2. The hopelessness of boosting the primes

The original consideration of the problem described above was under the pretense
that one might be able to “learn” the primes if one could leverage a knowledge of
divisibility by a certain integer. That is, could you use some combination of elementary
heuristics in H′ to determine whether or not a number is prime? The premise of using
simple “rules of thumb” underlies the idea behind AdaBoost (cf. [5] for a detailed
account). How good is the output of AdaBoost using a base hypothesis class H′?
As it turns out, when one has a sufficiently large uniform random sample from Xn,
AdaBoost is powerless to try to predict which numbers are primes and which aren’t.
The primes are simply too rich for H′ to “understand”.

Before continuing to the results, let us show that there is 1) no loss in generality
in considering only the divisibility by primes and that 2) weak learning isn’t possible.
We address the first point by considering the larger hypothesis class H = {hd : d ∈
X} for hd defined analogously to hp above, though we allow our d to be any integer
greater than or equal to 2, not just a prime. If our instances X1, . . . , Xm are labelled by
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whether or not they are prime—i.e. r(x) = 1 if x is prime and 0 otherwise—then any
algorithm that returns an empirical risk minimization (ERM) hypothesis will return only
a hypothesis in H′. We will denote our sample as S = (X1, r(X1)), . . . , (Xm, r(Xm)).
Choose nonnegative constants a = (a1, . . . , am) such that ∑m

i=1 ai = 1, and define the
weighted empirical risk of hd as

La(S, d) :=
m

∑
i=1

ai1
{

hd(Xi) 6= r(Xi)
}

= ∑
i: r(Xi)=0

ai1
{

hd(Xi) = 1
}

as only composite numbers factor into the error. For ease of exposition, define

D(S, d) := ∑
i: r(Xi)=0

ai1
{

Xi is divisible by d
}

1
{

Xi > d
}

,

so that La(S, d) = 1− D(S, d). Now define

dS = min
{

d ∈ X : D(S, d) = max
k∈X

D(S, k)
}

.

It is straightforward to show that hS := hdS is an ERM rule, as the training error for hd
with respect to the prime labeling function is 1− D(S, d). We aim to show that dS is
prime. To show this, suppose that p | dS. Then p ≤ dS and if dS | xi and xi > dS then
p | xi and xi > p. Thus

D(S, dS) ≤ D(S, p),
but since D(S, dS) is maximal, D(S, dS) = D(S, p), and hence p ≥ dS, thus p = dS.
However, and perhaps no surprise due to the VC-dimension of H′, the error La(S, d)
can be arbitrarily large (depending on a). Consider a sample of m values consisting of
products of consecutive primes, e.g. x1 = p1p2, x2 = p3p4, . . . , xm = p2m−1p2m. All of
these numbers are composite so that La(S, d) ≥ 1−maxi ai. With this established, we
cannot necessarily find what is called a “weak learner” hd such that La(S, d) ≤ 1/2− γ,
where γ > 0. There is clearly no hope of boosting this hypothesis class to discover the
primes—see [5] for more information on weak learning.

There is something more quantitatively forceful we can say about the hopelessness
of our situation. We consider the stochastic distribution of the weights derived by run-
ning AdaBoost with H′ (or H) as the base hypothesis class and where the underlying
distribution is uniform on {2, . . . , n}. Let Xn := {2, . . . , n} ⊂ X and for a probability
distribution D define the generalization error to be LD(hd) := P(hd(X) 6= r(X)) and
the empirical risk LS(hd) := La(S, d) where a = (1/m, . . . , 1/m).

Proposition 2.1. Consider the hypothesis class H or H′. Suppose the Dn is the uniform
distribution on {2, . . . , n} and we have the prime labeling function x 7→ r(x) for the instances
X1, . . . , Xmn in our sample Sn. Then if mn = ω

(
(log n)2), we have the following convergence

in probability,

LDn(hSn)
P→ 1/2,
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as n → ∞. Furthermore, if we have mn = ω
(
(log n)3), then we have convergence of the

generalization error
LDn(hSn)

a.s.→ 1/2, n→ ∞,

where a.s.→ denotes almost sure convergence, or convergence with probability 1.

Proof. We begin by denoting

t(n) :=
∣∣{x ∈ X : x ≤ n, x is even}

∣∣ = {(n− 1)/2 if n is odd ,
n/2 if n is even.

It follows that |t(n)/(n− 1)− 1/2| ≤ 1
2(n−1) . Notice that

LDn(h2) = P(h2(X) = 1, r(X) = 0)

= P(r(X) = 0)− P(h2(X) = 0, r(X) = 0)

= P(r(X) = 0)− P(h2(X) = 0)

= 1− π(n)
n− 1

− t(n)− 1
n− 1

,

hence |LDn(h2)− 1/2| ≤ (3/2 + π(n))/(n− 1) → 0, n → ∞. So there exists some N
such that if n ≥ N then

|LDn(h2)− 1/2| ≤ (3/2 + π(n))/(n− 1) ≤ ε/2.

Elementary union bounds yield that

P(|LDn(hSn)− 1/2| > ε)

≤ P(|LDn(hSn)− LDn(h2)| > ε/2) + 1
{
|LDn(h2)− 1/2| > ε/2

}
≤ P(dSn 6= 2),

for n ≥ N. We aim to show that P(dSn 6= 2) → 0, as n → ∞. Define a sequence of
random variables Yi, i = 1, 2, . . . where Yi = 1 if Xi is even and not prime, Yi = 0 if Xi
is prime and Yi = −1 if Xi is odd and not prime.

P(Yi = 1) =
t(n)− 1

n− 1
> P(Yi = −1) =

n− t(n)− π(n)
n− 1

Therefore, we can define a random walk Tn := ∑mn
i=1 Yi. If Tn ≥ 0, then dSn = 2, and

vice versa. Hence, P(dSn 6= 2) = P(Tn < 0). We will use an approximation to this
probability, via Hoeffding’s inequality. We note that

µn := E[Yi] =
2
(
t(n)− 1

)
+ π(n)

n− 1
− 1,

Additionally, standard properties of π(n) imply that there exists some N0 ≥ N such
that

µn ≥
1

log n
− 1

n
≥ 1

2 log n
,
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for all n ≥ N0. We see that as µn > 0, then

P(Tn < 0) = P(Tn/mn < µn − µn) ≤ e−
mnµ2

n
2 ,

by Hoeffding’s inequality and we know that for n ≥ N0 we have

mnµ2
n ≥

mn

8(log n)2 → ∞, n→ ∞,

by the assumption on mn. If mn = ω
(
(log n)3), then in particular there exists some

δ > 0 such that mn/(8 log n)2 ≥ (1 + δ) log n for large enough n. As ∑∞
n=1 n−(1+δ) < ∞,

we have almost sure convergence by the Borel-Cantelli lemma. �

In AdaBoost, given a sample S, we have at round t ∈ N a weight wt for our chosen
hypothesis ht ∈ H′. We denote wt as Wt when S is seen as random as opposed to
fixed/observed. Suppose that our instances are generated according to Dn and are
labelled according to the prime labeling function x 7→ r(x). We suppose that 0 is redefined
as −1 in our indicator functions to comport with the typical setting. One question is: as
n→ ∞ (supposing that mn → ∞ as well) what is the stochastic behavior of the random
weights (Wt,n, t ∈N)? We have already established that the ERM threshold dSn for
the first round of AdaBoost becomes 2 for large enough n (with probability 1) in the
proof of Proposition 2.1. In the first round of AdaBoost, we set each ai = 1/mn with
ε1,n = LSn(hSn) and hence we get that

W1,n =
1
2

log
(

1
ε1,n
− 1
)

a.s.→ 0, n→ ∞,

because
∣∣LSn(hSn) − LDn(hSn)

∣∣ a.s.→ 0, n → ∞ when mn = ω
(
(log n)3), by Hoeffding’s

inequality, the triangle inequality and Proposition 2.1. We can extend this result quite
a bit further. Before beginning, note that

εt,n := min
h∈H′

mn

∑
i=1

D(t)
i 1
{

h(Xi) 6= r(Xi)
}

,

where D(t)
i are weights summing to 1 (defined at (4)) and ht is the hypothesis in H′

which minimizes εt,n. Furthermore, Wt,n is defined as

Wt,n :=
1
2

log
( 1

εt,n
− 1
)

.

Theorem 2.2. Suppose that mn = ω
(
(log n)3) and that Wt,n are the weights for the tth round

AdaBoost hypothesis based on the sample Sn and uniform distribution Dn. Then we have for all
t ∈N that

Wt,n
a.s.→ 0, n→ ∞.

Proof. We will define D(t)
i below. We have already established that W1,n → 0 a.s. as

n → ∞. We will now show that P
(

limn→∞ Wt,n = 0
)
= 1 for each t ∈ N. We proceed

by induction (we have already demonstrated the base case) and suppose that for all
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s < t + 1 that P
(

limn→∞ Ws,n = 0
)
= 1. We begin by noting that for any 1 ≤ i ≤ mn

that

(4) D(t+1)
i :=

D(t)
i e−Wt,nr(Xi)ht(Xi)

∑mn
i=1 D(t)

i e−Wt,nr(Xi)ht(Xi)
,

where D(1)
i = 1/mn. Hence, we establish that

D(t)
i e−2Wt,n ≤ D(t+1)

i ≤ D(t)
i e2Wt,n .

Therefore,
1

mn
exp

(
− 2

t

∑
j=1

Wj,n

)
≤ D(t+1)

i ≤ 1
mn

exp
(

2
t

∑
j=1

Wj,n

)
,

for all n, and

exp
(
− 2

t

∑
j=1

Wj,n

)
LSn(hSn) ≤ εt+1,n ≤ exp

(
2

t

∑
j=1

Wj,n

)
LSn(hSn),

which implies that εt+1,n
a.s.→ 1/2, by the induction hypothesis. Therefore, Wt+1,n

a.s.→ 0
as desired. �

What Theorem 2.2 says is that the output hypothesis of AdaBoost,

HT
n (x) := sign

(
T

∑
t=1

Wt,nht(x)

)
,

for any fixed T ∈ N and a sufficiently large sample size n, is pretty much useless in
learning the primality of the integers. At the very least, it is no better than a function
that predicts all odd numbers are prime.

3. VC-dimension of finite arithmetic progressions

We conclude by returning a variation of our original problem and considering the
class Hk = {hd,k : d ∈ X}, k ∈ X where hd,k(x) = 0 if and only if x ∈ {2d, . . . , kd}.
Suppose that H′k is the restriction of Hk where d is prime. These classes also cannot
misidentify the primes, as with H and H′. The VC-dimension of H2 and H′2 both equal
1 and this can be seen by noting that if c1 = 2d and c1 6= c2, then c2 6= 2d so that if
hd,2(c1) = 1 then hd,2(c2) = 0. Consider the set C = {12, 18}. Then (h6,3(12), h6,3(18)) =
(0, 0), (h4,3(12), h4,3(18)) = (0, 1), (h9,3(12), h9,3(18)) = (1, 0) and (h7,3(12), h7,3(18)) =
(1, 1). Thus, VCdim(H3) = 2. Suppose that H4 shatters a set {c1, c2, c3} of size 3. Then,
potentially relabeling instances, c1 = 2d, c2 = 3d and c4 = 4d for some d. However, we
must also have c1 = 3d′ and c3 = 4d′ or c1 = 2d′ and c3 = 3d′, which is impossible.
Hence, VCdim(H4) = 2.

As a final example, let us look at the VC-dimension of H′3. To shatter a set {c1, c2},
we must have c1 = 2p = 3q and c2 = 3p = 2r for some primes q < p < r. Therefore,
2 | p and 3 | p, which is impossible as p is prime. Hence VCdim(H′3) = 1. As usual, we
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will denote the number of primes less than or equal to x as π(x). It will help to state a
short lemma, similar to Corollary 1.2.

Lemma 3.1. For Hk to shatter a set C = {c1, . . . , c`}, it must be the case that each ci has at
least 2`−1 distinct factors d1, . . . , d2`−1 , di ∈ X for i = 1, 2, . . . , 2`−1. As result of the structure
of Hk, if shattering occurs, we must also have that 2`−1 ≤ k− 1.

Proof. If Hk shatters C, then hd,k(ci) = 0 for 2`−1 distinct values of d. In other words
ci = ai,1d1 = · · · = ai,mi dm, where mi ≥ 2`−1 where all ai,j ≤ k for 1 ≤ j ≤ mi. As the dj
are distinct, so must the ai,j be. Therefore, we must have mi ≤ k− 1. �

Our final result gives a bound on the VC-dimension of Hk and H′k. This result is
conceptually similar to Theorem 3.1 in [2], which establishes a formula for the VC-
dimension of subsets consisting of all multiples of d lying between −n and n.

Proposition 3.2.⌊
log2 π(ηk)

⌋
≤ VCdim(H′k) ≤ VCdim(Hk) ≤ dlog2(k− 1)e+ 1

where
ηk := b(log2 k)/2c.

Proof. Suppose first that ` ≥ dlog2(k− 1)e+ 2. if Hk were to shatter C = {c1, . . . , c`},
then Lemma 3.1 implies that 2`−1 ≤ k− 1, or equivalently that

`− 1 ≤ log2(k− 1)

⇒ dlog2(k− 1)e+ 1 ≤ log2(k− 1),

a contradiction. Hence, VCdim(Hk) ≤ dlog2(k− 1)e+ 1.
Now consider a set of size

` ≤ blog2 π(n)c,
where n ≤ k so that there are at least 2` ≤ π(n) distinct primes less than or equal to n
in the set {2, . . . , k}. Enumerate these primes p1 < p2 < · · · < p2` ≤ n ≤ k and define

ci :=
2`

∏
j=1

p
1Aj

(i)

j ,

where similar to the above Aj are an enumeration of all the subsets of {1, . . . , `}. Now,
consider some subset Am ⊂ {1, . . . , `}. Then we have for i ∈ Am that

ci = pm ∏
1≤j≤2`

j 6=m

p
1Aj

(i)

j ,

so we are set if we can show that

∏
1≤j≤2`

j 6=m

p
1Aj

(i)

j ≤ k.
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We have that

∏
1≤j≤2`

j 6=m

p
1Aj

(i)

j ≤ 22n,

by Theorem 415 in [6]. Thus, taking any n ≤ blog2(k)/2c will do. �
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