STARLIKENESS OF JANOWSKI SPIRALLIKE FUNCTIONS IN THE UNIT DISK

FAUD ALSARARI

ABSTRACT. The aim of this paper is to introduce and study new class of analytic functions which generalize the classes of λ -Spirallike Janowski functions, In particular. We gave the representation theorem, the right said of the covering theorem, starlikeness estimates and some properties related to the functions in the class $S^{\lambda}(T, H, F)$

1. Introduction

Let $\mathcal{W} = \{\vartheta \in \mathbb{C} : |\vartheta| < 1\}$ be the open unit disk and \mathcal{M} denote the class of functions has a Taylor–Maclaurin's series representation $h(\vartheta) = \vartheta + \sum_{i=2}^{\infty} a_i \vartheta^i$. Suppose that \mathcal{S} the class of functions in \mathcal{M} and univalent in \mathcal{W} . The convolution or Hadamard product of two analytic functions $h, g \in \mathcal{M}$ where h is defined above and $g(\vartheta) = \vartheta + \sum_{i=2}^{\infty} b_i \vartheta^i$, is

$$(h * g)(\vartheta) = \vartheta + \sum_{i=2}^{\infty} a_i b_i \vartheta^i.$$

which are analytic in the open unit disk , and S denote the subclass of M consisting of all function which are univalent in U.

For *h* and *g* be in \mathcal{M} , we say that the function *h* is *subordinate* to *g* in \mathcal{W} , and write $h \prec g$, if there exists a *Schwarz function* $u \in \Phi$, where

(1.1)
$$\Phi := \{ u \in \mathcal{M}, \ u(0) = 0, |u(\vartheta)| < 1, \ \vartheta \in \mathcal{W} \},$$

such that $h(\vartheta) = g(u(\vartheta))$, $\vartheta \in W$. If *g* is univalent in W, then

$$h(\vartheta) \prec g(\vartheta) \Leftrightarrow h(0) = g(0) \text{ and } h(\mathcal{W}) \subset g(\mathcal{W}), \ \vartheta \in \mathcal{W}.$$

Using the above principle of the subordination we define the well-known Carathéodory class \mathcal{P} of functions p which are analytic in \mathcal{W} , which are normalized by

$$p(\vartheta) = 1 + \sum_{j=1}^{\infty} c_j \vartheta^j \text{ and } \Re\{p(\vartheta)\} > 0, \ \vartheta \in \mathcal{W}.$$

Date: August 12, 2024.

²⁰²⁰ Mathematics Subject Classification. Primary: 30C45.

Key words and phrases. Janowski functions, Subordination, Starlike functions, Convex functions, λ -Spirallike.

In [7], Polatoğlu, et al. defined and studied a generalized class $\mathcal{P}[H, T, F]$ of Janowski functions. A function *p* in \mathcal{P} is said to be in class $\mathcal{P}[H, T, F]$ if it satisfies the condition

$$p(\vartheta) \prec \frac{1 + [(1 - F)T + FH]\vartheta}{1 + H\vartheta} \Leftrightarrow p(\vartheta) = \frac{1 + [(1 - F)T + FH]u(\vartheta)}{1 + Hu(\vartheta)}, \ u \in \Phi,$$

where $-1 \le B < T \le 1$ and $0 \le F < 1$.

Definition 1.1. A function $f \in M$ is said to belongs to the class $S^{\lambda}(T, H, F)$, with $-1 \leq H < T \leq 1$ and $0 \leq F < 1$, if

$$\frac{\frac{e^{i\lambda}\vartheta h'(\vartheta)}{h(\vartheta)} - i\sin(\lambda)}{\cos(\lambda)} \in \mathcal{P}[H, T, F]$$

Remark 1.2. Using the principle of the subordination we can easily obtain that the equivalent condition for a function h belonging to the class $S^{\lambda}(T, H, F)$, is

$$\left|\frac{\vartheta h'(\vartheta)}{h(\vartheta)}-1\right| < \left|\left[\gamma-H\frac{\vartheta h'(\vartheta)}{h(\vartheta)}\right|, \ \vartheta \in \mathcal{W}.$$

where

(1.2)
$$\gamma = e^{-i\lambda} \{ [(1-F)T + FH] \cos(\lambda) + iH \sin(\lambda) \}.$$

For special cases for the parameters λ , *T*, *H* and *F* the class $S^{\lambda}(T, H, 0) = S^{\lambda}(T, H)$ Motivated by Polatoğlu, et al. [8], $S^{0}(T, H, E) = S(T, H, F)$ Motivated by Polatoğlu, et al. [7], $S^{0}(T, H, 0) = S(T, H)$ these class reduce to well-known class defined by Janowski [6], $S^{0}(1 - 2\eta, -1, 0) = S(\eta)$ the well-known class of starlike function of order alpha by Robertson [2], $S^{0}(1, -1, 0) = S^{*}$ the class introduced by Nevanlinna [4], etc.

Lemma 1.3. [1] Let $u(\vartheta)$ be regular in the unit disk W with u(0) = 0. Then if $|u(\vartheta)|$ obtains its maximum value on the circle $|\vartheta| = r$ at the point ϑ_1 , one has $\vartheta_1 u'(\vartheta_1) = ku(\vartheta)$, for some $k \ge 1$.

Lemma 1.4. [5, Lemma 2.3] *Let* $p \in \mathcal{P}[T, H, F]$ *, then*

$$\frac{1-[(1-F)T+FH]r}{1-Hr} \le |p(\vartheta)| \le \frac{1+[(1-F)T+FH]r}{1+Hr}, \ |\vartheta| \le r < 1.$$

Lemma 1.5. [7] Let $p \in \mathcal{P}[T, H, F]$, then the set of the values of p is in the closed disc with center at C(r) and having the radius $\rho(r)$, where

$$\begin{cases} C(r) = \left(\frac{1-H[(1-F)T+FH]r^2}{1-H^2r^2}, 0\right), \rho(r) = \frac{(1-F)(T-H)r}{1-H^2r^2} & \text{if } H \neq 0, \\ C(r) = (1,0), \rho(r) = (1-F)|T|r & \text{if } H = 0. \end{cases}$$

2. Main results

Theorem 2.1.

(2.1)
$$\underline{h} \in S^{\lambda}(T, H, F) \Leftrightarrow \left(\frac{\vartheta h'(\vartheta)}{h(\vartheta)} - 1\right) \prec \begin{cases} \frac{e^{-i\lambda}(1-F)(T-H)\cos(\lambda)\vartheta}{1+H\vartheta}, & H \neq 0, \\ e^{-i\lambda}(1-F)T\cos(\lambda)\vartheta, & H = 0. \end{cases}$$

Proof. Let $h \in S^{\lambda}(T, H, F)$, we define the functions $u(\vartheta)$ by

(2.2)
$$\frac{h(\vartheta)}{\vartheta} = \begin{cases} (1 + Hu(\vartheta))^{\frac{e^{-i\lambda}(1-F)(T-H)\cos(\lambda)}{H}}, & H \neq 0, \\ e^{(1-F)T\cos(\lambda)e^{-i\lambda}u(\vartheta)}, & H = 0. \end{cases}$$

For $\vartheta = 0$, we note that

$$(1+Hu(\vartheta))^{\frac{e^{-i\lambda}(1-F)(T-H)\cos(\lambda)}{H}} = 1 = e^{(1-F)T\cos(\lambda)e^{-i\lambda}u(\vartheta)}$$

That mean is analytic and u(0) = 0, if we take the logarithmic derivative from 2.2, we get

$$\left(\frac{\vartheta h'(\vartheta)}{h(\vartheta)} - 1\right) = \begin{cases} \frac{e^{-i\lambda}(1-F)(T-H)\cos(\lambda)\vartheta u'(\vartheta)}{1+Hu(\vartheta)}, & H \neq 0, \\ e^{-i\lambda}(1-F)T\cos(\lambda)\vartheta u'(\vartheta), & H = 0 \end{cases}$$

We can easily conclude that this subordination is equivalent to $|u(\vartheta)| < 1$ for all $z \in W$. On the contrary let's assume that there exists $z_1 \in W$, such that $|u(\vartheta)|$ attains its maximum value on the circle $|\vartheta| = r$, that is $|u(\vartheta_1)| = 1$. Then when the conditions $\vartheta_1 u'(z_1) = ku(\vartheta_1), k \ge 1$ are satisfied for such $\vartheta_1 \in W$, by using Lemma 1.3 we obtain,

$$\left(\frac{\vartheta_1 h'(\vartheta_1)}{h(\vartheta_1)} - 1\right) = \begin{cases} \frac{e^{-i\lambda}(1-F)(T-H)\cos(\lambda)ku(\vartheta_1)}{1+Hu(\vartheta_1)} = G_1(u(\vartheta_1)) \notin G_1(\mathcal{W}), & H \neq 0, \\ e^{-i\lambda}(1-F)T\cos(\lambda)ku(\vartheta_1) = G_2(u(\vartheta_1)) \notin G_2(\mathcal{W}), & H = 0, \end{cases}$$

which contradicts 2.1 therefore the assumption is wrong , i.e, $|u(\vartheta)| < 1$ for all $\vartheta \in W$. This shows that

$$h \in \mathcal{S}^{\lambda}(T, H, F) \Rightarrow \left(\frac{\vartheta h'(\vartheta)}{h(\vartheta)} - 1\right) \prec \begin{cases} \frac{e^{-i\lambda}(1-F)(T-H)\cos(\lambda)\vartheta}{1+H\vartheta}, & H \neq 0, \\ e^{-i\lambda}(1-\alpha)A\cos(\lambda)z, & B = 0. \end{cases}$$

Conversely,

$$\begin{pmatrix} \frac{\vartheta h'(\vartheta)}{h(\vartheta)} - 1 \end{pmatrix} \prec \begin{cases} \frac{e^{-i\lambda}(1-F)(T-H)\cos(\lambda)\vartheta}{1+H\vartheta}, & H \neq 0, \\ e^{-i\lambda}(1-F)T\cos(\lambda)\vartheta, & H = 0. \end{cases} \Rightarrow$$

$$\frac{e^{-i\lambda}\frac{\vartheta h'(\vartheta)}{h(\vartheta)} - i\sin(\lambda)}{\cos(\lambda)} = \begin{cases} \frac{1+[(1-F)T+FH]u(\vartheta)}{1+Hu(\vartheta)}, & H \neq 0, \\ 1+[(1-F)T+FH]u(\vartheta), & H = 0. \end{cases}$$

This shows that $h(\vartheta) \in S^{\lambda}(T, H, F)$.

Online Journal of Analytic Combinatorics, Issue 18 (2023), #01

FAUD ALSARARI

Remark 2.2. In [7] and [8], a similar technique using Jack's lemma was used to investigate Janowski starlikeness.

Theorem 2.3. If
$$h \in S^{\lambda}(T, H, F)$$
, then $|h(\vartheta)| \leq$

$$\begin{cases} \int_{0}^{r} \left[\cos(\lambda) \frac{1 + \left[(1 - F)T + FH \right] \sigma}{1 + H\sigma} + |\sin(\lambda)| \right] (1 + H\sigma)^{\frac{e^{-i\lambda}(1 - F)(T - H)\cos(\lambda)}{H}} d\sigma, & H \neq 0, \\ \int_{0}^{r} \left[\cos(\lambda) \left[1 + (1 - F)T\sigma \right] + |\sin(\lambda)| \right] \exp\left[(1 - F)T\cos(\lambda)(\cos(\lambda) + \sin(\lambda))\sigma \right] d\sigma, & H = 0, \\ where |\vartheta| \leq r < 1 \end{cases}$$

where $|v| \leq r < 1$.

Proof. Integrating the function h' along the close segment connecting the origin with an arbitrary $\vartheta \in W$, and observing that a point on this segment is of the form $\zeta = \sigma e^{i\theta}$, with $\sigma \in [0, r]$, where $\theta = \arg \vartheta$ and $r = |\vartheta|$, we get

$$h(\vartheta) = \int_0^{\vartheta} h'(\zeta) d\zeta, \ \vartheta = r e^{i\theta},$$

hence

$$|h(\vartheta)| = \left| \int_0^r h'\left(\sigma e^{i\theta}\right) e^{i\theta} d\sigma \right| \le \int_0^r \left| h'\left(\sigma e^{i\theta}\right) e^{i\theta} \right| d\sigma.$$

For an arbitrary function $h \in S^{\Lambda}(T, H, F)$, we have

$$\frac{1}{\cos(\lambda)} \left[\frac{e^{i\lambda} \vartheta h'(\vartheta)}{h(\vartheta)} - i\sin(\lambda) \right] = p(\vartheta), \qquad p \in \mathcal{P}[T, H, F].$$

We need to study the following cases:

(*i*) If $H \neq 0$, then there exists a function $u \in \Phi$, such that by (2.2) we get $h(\vartheta) = \vartheta(1 + Hu(\vartheta))^{\frac{e^{-i\lambda}(1-F)(T-H)\cos(\lambda)}{H}}$, and $h'(\vartheta) = \frac{h(\vartheta)}{\vartheta} e^{-i\lambda} [\cos(\lambda)p(\vartheta) + i\sin(\lambda)],$

therefore

(2.3)
$$\begin{aligned} |h'(\vartheta)| \leq \\ \left[\cos(\lambda)\frac{1+[(1-F)T+FH]r}{1+Hr}+|\sin(\lambda)|\right]|1+Hu(\vartheta)|^{\frac{e^{-i\lambda}(1-F)(T-H)\cos(\lambda)}{H}}, \end{aligned}$$

for $|\vartheta| \le r < 1$. Since $u \in \Phi$, we have

$$|1 + Hu(\vartheta)| \le 1 + |H|r, \ |\vartheta| \le r < 1.$$

Case 1. If H > 0, using the fact that $-1 \le H < T \le 1$ and $0 \le F < 1$, we have

$$|1+Hu(\vartheta)|^{\frac{e^{-i\lambda}(1-F)(T-H)\cos(\lambda)}{H}} \leq (1+|H|r)^{\frac{e^{-i\lambda}(1-F)(T-H)\cos(\lambda)}{H}}, \ |\vartheta| \leq r < 1,$$

and from (2.3) for $|\vartheta| \le r < 1$, we obtain

$$(2.4) \quad |h'(\vartheta)| \le \left[\cos(\lambda)\frac{1 + \left[(1-F)t + FH\right]r}{1 + Hr} + |\sin(\lambda)|\right] \left(1 + |h|r\right)^{\frac{e^{-i\lambda}(1-F)(T-H)\cos(\lambda)}{H}}$$

Case 2. If H < 0, from the fact that $-1 \le H < T \le 1$ and $0 \le F < 1$, we have

$$(1-|H|r)^{\frac{e^{-i\lambda}(1-F)(T-H)\cos(\lambda)}{H}} \geq |1+Hu(\vartheta)|^{\frac{e^{-i\lambda}(1-F)(T-H)\cos(\lambda)}{H}}, \ |\vartheta| \leq r < 1,$$

and from (2.3) for $|\vartheta| \le r < 1$, we obtain

(2.5)
$$\left[\cos(\lambda)\frac{1+[(1-F)T+FH]r}{1+Hr}+|\sin(\lambda)|\right](1-|H|r)^{\frac{e^{-i\lambda}(1-F)(T-H)\cos(\lambda)}{H}} \ge |h'(\vartheta)|.$$

Now, combining the inequalities (2.4) and (2.5), we finally conclude that (2.6)

$$|h'(\vartheta)| \leq \left[\cos(\lambda)\frac{1 + \left[(1-F)T + FH\right]r}{1 + Hr} + |\sin(\lambda)|\right] (1 + Hr)^{\frac{(1-F)(T-H)}{H}}, \ |\vartheta| \leq r < 1,$$

then

$$|h(\vartheta)| \leq \int_0^r \left| h'\left(\sigma e^{i\theta}\right) e^{i\theta} \right| d\sigma \leq \int_0^r \left[\cos(\lambda) \frac{1 + \left[(1-F)T + FH \right] \sigma}{1 + H\sigma} + |\sin(\lambda)| \right] (1 + H\sigma)^{\frac{e^{-i\lambda}(1-F)(T-H)\cos(\lambda)}{H}} d\sigma,$$

that is

$$|h(\vartheta)| \leq \int_0^r \left[\cos(\lambda) \frac{1 + \left[(1 - F)T + FH\right]\sigma}{1 + H\sigma} + |\sin(\lambda)|\right] (1 + H\sigma)^{\frac{e^{-i\lambda}(1 - F)(T - h)\cos(\lambda)}{H}} d\sigma, \ |\vartheta| \leq r < 1.$$

(*ii*) If B = 0, there exists a function $u \in \Phi$, such that $h(\vartheta) = \vartheta e^{(1-F)T\cos(\lambda)e^{-i\lambda}u(\vartheta)}$, and therefore

(2.7)
$$|h'(\vartheta)| \leq \left\{\cos(\lambda)\left[1 + (1 - F)Tr\right] + |\sin(\lambda)|\right\} \left|\exp\left[(1 - F)T\cos(\lambda)e^{-i\lambda}u(\vartheta)\right]\right|, \ |\vartheta| \leq r < 1.$$

Since $\left|\exp\left[(1-F)T\cos(\lambda)e^{-i\lambda}u(\vartheta)\right]\right| = \exp\left[((1-F)T\cos(\lambda)\Re\{e^{-i\lambda}u(\vartheta)\}\right], \vartheta \in \mathcal{W},$ using a similar computation as in the previous case, we deduce

$$\left|\exp\left[(1-F)T\cos(\lambda)e^{-i\lambda}u(\vartheta)\right]\right| \le \exp\left[(1-F)T\cos(\lambda)(\cos(\lambda)+\sin(\lambda))r\right], \ |\vartheta| \le r < 1$$

Thus, (2.7) yields

$$(2.8) \qquad |h'(\vartheta)| \le [\cos(\lambda)[1+(1-F)Tr] + |\sin(\lambda)|] \exp[(1-F)T\cos(\lambda)(\cos(\lambda) + \sin(\lambda))r], r < 1,$$
and hence

$$|h(\vartheta)| \leq \int_0^r \left| h'\left(\sigma e^{i\theta}\right) e^{i\theta} \right| d\sigma \leq$$

$$\int_0^r \left[\cos(\lambda)\left[1 + (1 - F)T\sigma\right] + \left|\sin(\lambda)\right|\right] \exp\left[(1 - F)T\cos(\lambda)\left(\cos(\lambda) + \sin(\lambda)\right)\sigma\right]\right] d\sigma,$$

that is

$$|h(\vartheta)| \le \int_0^r \left[\cos(\lambda)\left[1 + (1 - F)T\sigma\right] + |\sin(\lambda)|\right] \exp\left[(1 - F)T\cos(\lambda)\left(\cos(\lambda) + \sin(\lambda)\right)\sigma\right] d\sigma, \ r < 1.$$

Online Journal of Analytic Combinatorics, Issue 18 (2023), #01

FAUD ALSARARI

Theorem 2.4. *The radius of starlikeness of the class* $h \in S^{\lambda}(T, H, F)$ *is*

$$r = \begin{cases} \frac{2}{(1-F)(T-H)\cos(\lambda) + \sqrt{(1-F)^2(T-H)^2\cos^2(\lambda) + 4\left\{[(1-F)T+FH]H\cos^2(\lambda) + H^2\sin^2(\lambda)\right\}}}, & \text{if } H \neq 0, \\ \frac{1}{(1-F)T\cos(\lambda)}, & \text{if } H = 0. \end{cases}$$

This radius is sharp because the extremal function is

$$h(\vartheta) = \begin{cases} \vartheta(1+H\vartheta)^{\frac{e^{-i\lambda}(1-F)(T-H)\cos(\lambda)}{H}}, & H \neq 0, \\ \vartheta e^{(1-F)T\cos(\lambda)e^{-i\lambda}\vartheta}, & H = 0. \end{cases}$$

Proof. Since

(2.9)
$$\frac{\frac{e^{i\lambda}\vartheta h'(\vartheta)}{h(\vartheta)} - i\sin(\lambda)}{\cos(\lambda)} = p(\vartheta), \qquad p \in \mathcal{P}[T, H, F],$$

using Lemma 1.5, that is

(2.10)
$$\left| p(\vartheta) - \frac{1 - H[(1 - F)T + FH]r^2}{1 - H^2r^2} \right| \le \frac{(1 - F)(T - H)r}{1 - H^2r^2}.$$

Using (2.9) in (2.10) and after straightforward calculations we get

$$\begin{split} & \frac{1 - (1 - F)(T - H)\cos(\lambda)r - \left\{ [(1 - F)T + FH]H\cos^{2}(\lambda) + H^{2}\sin^{2}(\lambda)\right\}r^{2}}{1 - H^{2}r^{2}}, & \text{if} \quad H \neq 0, \\ & 1 - (1 - F)T\cos(\lambda)r, & \text{if} \quad H = 0 \end{split} \right\} \leq \Re \left\{ \vartheta \frac{h'(\vartheta)}{h(\vartheta)} \right\} \leq \\ & \left\{ \begin{array}{c} \frac{1 + (1 - F)(T - H)\cos(\lambda)r - \left\{ [(1 - F)T + FH]H\cos^{2}(\lambda) + H^{2}\sin^{2}(\lambda)\right\}r^{2}}{1 - H^{2}r^{2}}, & \text{if} \quad H \neq 0, \\ & 1 + (1 - F)T\cos(\lambda)r, & \text{if} \quad H = 0, \end{array} \right\} \end{split}$$

where $|\vartheta| \le r < 1$. The above inequalities shows that this theorem is true.

Remark 2.5. • *For* $T = -H = 1, \lambda = F = 0$, we obtain r = 1. • *For* T = -H = 1, F = 0, we obtain $r = \frac{1}{\cos(\lambda) + |\sin(\lambda)|}$.

Corollary 2.6. If
$$h \in S^{\lambda}(T, H, F)$$
, then

$$\frac{(1-[(1-F)T+FH]r)\cos(\lambda)-(1-Hr)|\sin(\lambda)|}{1-Hr}, \quad \text{if} \quad H \neq 0, \\ (1-(1-F)Tr)\cos(\lambda) - |\sin(\lambda)|, \quad \text{if} \quad H = 0 \end{cases} \leq |\frac{\vartheta h'(\vartheta)}{h(\vartheta)}| \leq \left\{ \begin{array}{c} \frac{(1+[(1-F)T+FH]r)\cos(\lambda)+(1+Hr)|\sin(\lambda)|}{1+Hr}, \quad \text{if} \quad H \neq 0, \\ (1+(1-F)Tr)\cos(\lambda) + |\sin(\lambda)|, \quad \text{if} \quad H \neq 0, \end{array} \right.$$

where $|\vartheta| \leq r < 1$.

Proof. For an arbitrary function $h \in S^{\lambda}(T, H, F)$, we have

$$\frac{1}{\cos(\lambda)} \left[\frac{e^{i\lambda} \vartheta h'(\vartheta)}{h(\vartheta)} - i\sin(\lambda) \right] = p(\vartheta), \qquad p \in \mathcal{P}[T, H, F]$$

Using Lemma 1.4 and after the straightforward calculations we get the result.

References

- [1] I. S. Jack, Functions starlike and convex of order α , J. London. Math. Soc. Edinburgh, **3**(2), (1971).
- [2] M.S. Robertson, : On the theory of univalent functions, Ann Math, 37, (1936), 374-408.
- [3] P. L. Duren, Univalent Functions, Springer-Verlag, (1983).
- [4] R. Nevanlinna, Über die konforme abbildung sterngebieten, Översikt av Finska-Vetenskaps Societen Förhandlingar., 63(6), (1920-21), 1–21.
- [5] S. Hussain, M. Arif and S. Nawaz Malik, Higher order close-to-convex functions associated with Attiya-Srivastava operator, *Bull. Iranian Math. Soc.*, **40**(4), (2014), 911–920.
- [6] W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Polon. Math. 28(3), (1973), 297–326.
- [7] Y. Polatoğlu, M. Bolcal, A. Sen and E. Yavuz, A study on the generalization of Janowski functions in the unit disc, *Acta Mathematica. Academiae Paedagogicae Nyíregyháziensis.***22**, (2006), 27–31.
- [8] Y. Polatoğlu, Growth and distortion theorem for the Janowski alpha-spirallike functions in the unit disc, *Stud. Univ. Babeş-Bolyai Math.***57**, (2012), 255–259.

Except where otherwise noted, content in this article is licensed under a Creative Commons Attribution 4.0 International license.

DEPARTMENT OF MATHEMATICS, COLLEGE OF SCIENCES, YANBU, TAIBAH UNIVERSITY, SAUDI ARABIA. Email address: alsrary@gmail.com

 \square