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Abstract. In analogy with the semi-Fibonacci partitions studied recently by Andrews,
we define semi-m-Pell compositions. We find that these are in bijection with certain
weakly unimodal m-ary compositions. We give generating functions, bijective proofs,
and a number of unexpected congruences for these objects. In the special case of m = 2,
we have a new combinatorial interpretation of the semi-Pell sequence and connections
to other objects.

1. Introduction

A composition of a positive integer n is an ordered partition of n, that is, any se-
quence of positive integers (n1, . . . , nk) such that n1 + . . . + nk = n. Compositions of n
will be represented as vectors with positive-integer entries.

A recent paper of Andrews defined semi-Fibonacci partitions [2]. Motivated by the
philosophical position that where there is an interesting partition object there is often
an interesting composition object, we study the set SP(n, m) of semi-m-Pell compositions,
defined as follows:

Definition. SP(n, m) = {(n)}, n = 1, 2, . . . , m. If n > m and n is a multiple of m, then

SP(n, m) = {mλ | λ ∈ SP(n/m, m)}.
If n is not a multiple of m, that is, n ≡ r (mod m), 1 ≤ r ≤ m− 1, then SP(n, m) arises
from two sources: first, compositions obtained by inserting r at the beginning or at the
end of each composition in SP(n− r, m), and second, compositions obtained by adding
m to the single part of each composition λ ∈ SP(n − m, m) which is congruent to r
(mod m). (Note that λ contains exactly one part which is congruent to r modulo m,
see Lemma 1 below). If n is a multiple of m, then every semi-m-Pell composition of n
arises from multiplying the parts in all semi-m-Pell compositions of n

m by m.

As an illustration we have the following sets for small n:
SP(1, 3) = {(1)},
SP(2, 3) = {(2)},
SP(3, 3) = {(3)},
SP(4, 3) = {(1, 3), (3, 1), (4)},
SP(5, 3) = {(2, 3), (3, 2), (5)},
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SP(6, 3) = {(6)},
SP(7, 3) = {(1, 6), (6, 1), (4, 3), (3, 4), (7)},
SP(8, 3) = {(2, 6), (6, 2), (5, 3), (3, 5), (8)},
SP(9, 3) = {(9)},
SP(10, 3) = {(1, 9), (9, 1), (4, 6), (6, 4), (7, 3), (3, 7), (10)}.

Thus if we define sp(n, m) = |SP(n, m)|, then the following recurrence relation holds:

sp(n, m) = 0 if n ≤ 0, and sp(n, m) = 1 for 1 ≤ n ≤ m− 1.

Then for n ≥ m,

(1.1) sp(n, m) =

{
sp(n/m, m) if n ≡ 0 (mod m),
2 sp(n− r, m) + sp(n−m, m) if n ≡ r (mod m), 0 < r < m.

The semi-Pell sequence {sp(n)}n>0 occurs as sequence number A129095 in the On-
line Encyclopedia of Integer Sequences [8], where

(1.2)

{
sp(n/2) if n is even,
2 sp(n− 1) + sp(n− 2) if n is odd, n > 1.

However, there seems to be no connection of the sequence with compositions until now.
The companion sequence A129096 records the fact that the bisection of the semi-Pell
sequence sp(2n − 1), n > 0 is monotonically increasing: sp(2n + 3) = 2sp(2n + 2) +
sp(2n + 1) > sp(2n + 1) for all n ≥ 0.

In Section 2 we relate semi-m-Pell compositions to a restricted class of weakly uni-
modal compositions. We also give an alternative characterization of semi-m-Pell com-
positions in Section 3. Then in Section 4 we prove some congruences satisfied by the
enumeration function of these compositions. The most surprising of these is certainly
Theorem 5, which states a congruence mod 3 for semi-m-Pell compositions in certain
square-modulus arithmetic progressions. In Section 5 we briefly look at the special case
m = 2, the original motivation for this project, which are enumerated by the semi-2-Pell
sequence. .

2. The Semi-m-Pell Compositions

Lemma 1. Let λ ∈ SP(n, m).
(i) If m | n, then every part of λ is a multiple of m.
(ii) If n ≡ r (mod m), 1 ≤ r < m, then λ contains exactly one part ≡ r (mod m).

Proof. If m | n, the parts of a composition in SP(n, m) are divisible by m by construction.
For induction note that SP(r, m) = {(r)}, r = 1, . . . , m − 1; so the assertion holds

trivially. Assume that the assertion holds for the compositions of all integers < n
and consider λ ∈ SP(n, m) with 1 ≤ r < m. Then λ may be obtained by inserting
r at the beginning or end of a composition α ∈ SP(n − r, m). Since α consists of
multiples of m (as m|(n− r)), λ contains exactly one part ≡ r (mod m). Alternatively
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λ is obtained by adding m to the single part of a composition β ∈ SP(n−m, m) which
is ≡ r (mod m). Indeed β contains exactly one such part by the inductive hypothesis.
Hence the assertion is proved. �

We will associate the set of semi-m-Pell compositions with a class of restricted uni-
modal compositions into powers of m > 1.

A weakly unimodal composition (or stack) is defined to be any composition of the
form (a1, a2, . . . , ar, c, bs, . . . , b1) such that

1 ≤ a1 ≤ a2 ≤ · · · ≤ ar ≤ c > bs ≥ · · · ≥ b2 ≥ b1.

The set of the ai or the bj may be empty. The study of these compositions was pioneered
by Auluck [5] and Wright [9] and continues to instigate research (see, for example
[2, 3, 6]). The “concave" compositions studied by Andrews in [3] are weakly unimodal
compositions with a unique largest part.

Let oc(n, m) denote the number of weakly unimodal m-power compositions of n in
which every part size occurs together or in one “place”, with multiplicity not divisible
by m (see also Munagi-Sellers [7]). Thus for example, the following are some objects
enumerated by oc(92, 3): (272, 92, 32, 114), (18, 313, 92, 27) and (314, 9, 27, 114). However,
the following weakly unimodal binary compositions of 92 do not belong to oc(92, 3):
(18, 313, 92, 46, 3), (13, 313, 27, 92, 15).

Theorem 1. For integers n ≥ 1, m > 1,

(2.1) sp(n, m) = oc(n, m).

Their common generating function is

(2.2)
∞

∑
i=0

∑m−1
r=1 xmir

1− xmi+1

i−1

∏
t=0

(
1 +

2 ∑m−1
r=1 xmtr

1− xmt+1

)
.

Proof. We prove first the generating function claim, and then give a bijection.
First Proof (generating functions). Let Qm(x) = ∑n≥0 sp(n, m)xn. Then

Qm(x) = ∑
n≥0

sp(n, m)xnm +
m−1

∑
r=1

∑
n≥0

sp(nm + r, m)xnm+r

= ∑
n≥0

sp(n, m)xnm +
m−1

∑
r=1

∑
n≥1

sp(nm + r, m)xnm+r +
m−1

∑
r=1

sp(r, m)xr

= Qm(xm) +
m−1

∑
r=1

∑
n≥1

(2sp(nm, m) + sp(nm + r−m, m))xnm+r +
m−1

∑
r=1

xr

= Qm(xm) + 2
m−1

∑
r=1

xr ∑
n≥1

sp(nm, m)xnm +
m−1

∑
r=1

∑
n≥0

sp(nm + r, m)xnm+r+m +
m−1

∑
r=1

xr

= Qm(xm) + 2Qm(xm)
m−1

∑
r=1

xr +
m−1

∑
r=1

xr +
m−1

∑
r=1

∑
n≥0

sp(nm + r, m)xnm+r+m.
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Eliminating the last sum by means of the first equality, we obtain

Qm(x) = Qm(xm) + 2(Qm(xm)
m−1

∑
r=1

xr +
m−1

∑
r=1

xr + xm(Qm(x)−Qm(xm)),

(1− xm)Qm(x) = Qm(xm) + 2Qm(xm)
m−1

∑
r=1

xr +
m−1

∑
r=1

xr − xmQm(xm),

which gives the functional equation

Qm(x) =
∑m−1

r=1 xr

1− xm +
1 + 2 ∑m−1

r=1 xr − xm

1− xm Qm(xm).

The functional equation can be iterated. In the combinatorial limit we obtain

Qm(x) =
∞

∑
i=0

∑m−1
r=1 xmir

1− xmi+1

i−1

∏
t=0

1 + 2 ∑m−1
r=1 xmtr − xmt+1

1− xmt+1 .

Finally, we see that

Qm(x) =
∞

∑
i=0

∑m−1
r=1 xmir

1− xmi+1

i−1

∏
t=0

(
1 +

2 ∑m−1
r=1 xmtr

1− xmt+1

)
=

∞

∑
n=0

oc(n, m)xn

is also the generating function for oc(m, n), since the i term counts compositions in
which the largest part is mi, and there are two possible places for the parts of size
mt for t < i, if any appear at all, since these must appear with powers unimodally
increasing and then decreasing. This completes the first proof.

Second Proof (bijection). Let the sets enumerated by sp(n, m) and oc(n, m) be denoted
by SP(n, m) and OC(n, m) respectively.

Each part t of C ∈ SP(n, m) can be expressed as t = mi · h, i ≥ 0, where m - h. Now
transform t as follows:

t = mi · h 7−→ mi, mi, . . . , mi (h times).
Note that the case i = 0 may arise only as a first or last part of C. This gives a unique

member of OC(n, m) provided that we retain the clusters of the mi corresponding to
each t, in consecutive positions, and maintain the order of the parts of the resulting
m-power composition.

To reverse the map we write each β ∈ OC(n, m) in the one-place exponent notation,
to get β = (βu1

1 , . . . , βus
s ) with the m - ui, and containing at most one instance of a

1-cluster which may be βu1
1 or βus

s . Since each βi has the form mji , ji ≥ 0, we apply the
transformation:

β
ui
i = (mji)ui 7−→ mji · ui.

This gives a unique composition in SP(n, m) provided that the resulting parts retain
their relative positions. Indeed the image may contain at most one part ≡ r (mod m)
which occurs precisely when ji = 0.
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We illustrate the bijection with (14, 3, 18, 27) ∈ SP(62, 3):

(14, 3, 18, 27) = (30 · 14, 31 · 1, 32 · 2, 33 · 1) 7→ (114, 3, 92, 27) ∈ OC(62, 3).

�

We provide a full example with n = 13, m = 3, where sp(13, 3) = 13 = oc(13, 3). The
following members of the respective sets correspond 1-to-1 under the bijective proof of
Theorem 1:

SP(13, 3): (1, 3, 9), (3, 9, 1), (1, 9, 3), (9, 3, 1), (1, 12), (12, 1), (4, 9), (9, 4), (7, 6), (6, 7),
(10, 3), (3, 10), (13).

OC(13, 3): (1, 3, 9), (3, 9, 1), (1, 9, 3), (9, 3, 1), (1, 34), (34, 1), (14, 9), (9, 14), (17, 32), (32, 17),
(110, 3), (3, 110), (113).

Some coefficients in the expansion of Qm(x) are displayed in Table 1.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
m = 2 1 1 3 1 5 3 11 1 13 5 23 3 29 11 51
m = 3 1 1 1 3 3 1 5 5 1 7 7 3 13 13 3
m = 4 1 1 1 1 3 3 3 1 5 5 5 1 7 7 7
m = 5 1 1 1 1 1 3 3 3 3 1 5 5 5 5 1
m = 6 1 1 1 1 1 1 3 3 3 3 3 1 5 5 5

Table 1. Values of sp(n, m), for 2 ≤ m ≤ 6, 1 ≤ n ≤ 15

3. Structural Properties of Semi-m-Pell Compositions

Following [1] we define the max m-power of an integer N as the largest power of m
that divides N (not just the exponent of the power). Thus using the notation xm(N),
we find that N = u ·ms, s ≥ 0, where m - u and xm(N) = ms. So xm(N) > 0 for all N.
For example, x2(50) = 2 and x5(216) = 1.
Define three (reversible) operations on a composition C = (c1, . . . , ck) with a fixed
m > 1.

(i) If the first or last part of C is less than m, delete it: if c1 < m or ck < m, then
τ1(C) = (c2, . . . , ck) or τ1(C) = (c1, . . . , ck−1) respectively;

(ii) If m - ct > m, 1 ≤ t ≤ k, then τ2(c) = (c1, . . . , ct−1, ct −m, ct+1, . . . , ck);
(iii) If C consists of multiples of m, divide every part by m: τ3(C) = (c1/m, . . . , ck/m).

These operations are consistent with the recursive construction of the set SP(n, m),
where τ−1

3 , τ−1
1 and τ−1

2 correspond, respectively, to the three quantities in the recur-
rence (1.1).

Lemma 2. Let n > 0, m > 1 be integers with n ≡ r (mod m), 1 ≤ r < m. If C =
(c1, . . . , ck) ∈ SP(n, m), then c1 ≡ r (mod m) or ck ≡ r (mod m).

Online Journal of Analytic Combinatorics, Issue 18 (2023), #02
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Proof. If k ≤ 2, the assertion is clear. So assume that k > 2 such that ci ≡ r (mod m) for
a certain index i /∈ {1, k}. Then we can apply τ2 several times to obtain the composition
β = τs

2(C), s = b ci
mc, that contains r which is neither in the first nor last position.

But this contradicts the recursive construction of β. Hence the assertion holds for all
C ∈ SP(n, m). �

Remark 1. If Lemma 2 is violated when k > 2, the sequence of max m-powers of the
parts of C cannot be unimodal. If m - cj with cj /∈ {c1, ck}, then xm(cj) = 1.

Lemma 3. Let H(n, m) denote the set of compositions C of n such that the sequence
of max m-powers of the parts of C are distinct and unimodal. If C ∈ H(n, m) and
τi(C) 6= ∅, then τi(C) ∈ H(N, m), i = 1, 2, 3, for some N.

Proof. Let C = (c1, . . . , ck) ∈ H(n, m). If C contains a part r less than m, then r = c1
or r = ck (by Lemma 2). So τ1(C) ∈ H(n − r, m) since the max m-powers remain
distinct and unimodal. If C contains a non-multiple of m, say ct > m, then by Lemma
2, t ∈ {1, k}. Therefore τ2(C), i.e., replacing ct with ct −m, preserves the unimodality
of C. So τ2(C) ∈ H(n − m, m). Lastly, since the parts of C have distinct max m-
powers τ3(C) = (c1/m, . . . , ck/m) contains at most one non-multiple of m. Hence
τ3(C) ∈ H(n/m, m). �

We state an independent characterization of the semi-m-Pell compositions.

Theorem 2. A composition C of n is a semi-m-Pell composition if and only if the sequence of
max m-powers of the parts of C is distinct and unimodal.

Proof. We show that SP(n, m) = H(n, m). Let C = (c1, . . . , ck) ∈ SP(n, m) such that
C /∈ H(n, m). Denote the properties,

P1: sequence of max m-powers of the parts of C is distinct.
P2: sequence of max m-powers of the parts of C is unimodal.

First assume that C satisfies P2 but not P1. So there are ci > cj such that xm(ci) = xm(cj),
and let ci = uims, cj = ujms with m - ui, uj. Observe that τ1 deletes a part less than
m, if it exists, from a member of H(v, m). So we can use repeated applications of τ2
to reduce a non-multiple modulo m, followed by τ1. This is tantamount to simply
deleting the non-multiple of m, say ct, to obtain a member of H(N, m), N < v, from
Lemma 3. By thus successively deleting non-multiples from C, and applying τc

3 , c > 0,
we obtain a composition E = (e1, e2, . . .) with ei = vimw > ej = vjmw, where m - vi, vj
and w ≤ s. Then apply τw

3 to obtain a composition G with two non-multiples of m.
Then by Lemma 1, G /∈ SP(n, m). Secondly assume that C satisfies P1 but not P2. Then
by the proof of Lemma 2 and Remark 1, τu

2 (C) /∈ SP(N, m) for some u. Therefore
C ∈ SP(n, m) =⇒ C ∈ H(n, m).

Conversely let C = (c1, . . . , ck) ∈ H(n, m). If C = (t), 1 ≤ t ≤ m, then C ∈ SP(t, m).
If m|ci for all i, then τ3(C) = (c1/m, . . . , ck/m) ∈ H(n/m, m) contains at most one part
6≡ 0 (mod m), so C ∈ SP(n, m). Lastly assume that n ≡ r 6≡ 0 (mod m). Then r ∈ C or
m < ct ≡ r (mod m) for exactly one index t ∈ {1, k}. Thus τ1(C) consists of multiples
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of m while τ2(C) still contains one part 6≡ 0 (mod m). In either case C ∈ SP(n, m).
Hence H(n, m) ⊆ SP(n, m). The two sets are identical. �

As an illustration of Theorem 2 note (2, 9, 4), (1, 4, 2, 8) /∈ SP(15, 2) because the se-
quence of max m-powers of the parts are not unimodal, and (2, 10, 3), (3, 4, 6, 2) /∈
SP(15, 2) because the max m-powers are not distinct.

Theorem 3. Let n, m be integers with n ≥ 0, m > 1. Then

sp(nm + 1, m) = sp(nm + 2, m) = · · · = sp(nm + m− 1, m) = 1 + 2
n

∑
j=1

sp(j, m).

Proof. We first establish all but the last equality. By definition, sp(1, m) = sp(2, m) =
· · · = sp(m− 1, m) = 1, and since sp(m, m) = 1, we have sp(m + 1, m) = 2sp(m, m) +
sp(1, m) = 3. Similarly sp(m + 2, m) = 3 = sp(m + 3, m) = · · · = sp(2m − 1, m).
Assume that the result holds for all integers < nm. Then with 1 ≤ r ≤ m− 1 we have
sp(nm + r, m) = 2sp(nm, m) + sp(nm− (m− r), m). But 1 ≤ r ≤ m− 1 =⇒ m− 1 ≥
m− r ≥ 1 and sp(nm− (m− r), m) is constant by the inductive hypothesis. Hence the
result follows.

For the last equality, we iterate the recurrence (1.1). For each 1 ≤ r ≤ m− 1,

sp(mv + r, m) = 2sp(mv, m) + sp(m(v− 1) + r, m)

= 2sp(v, m) + 2sp(v− 1, m) + sp(m(v− 2) + r, m)

= · · ·
= 2sp(v, m) + 2sp(v− 1, m) + · · ·+ 2sp(2, m) + sp(m + r, m).

Since sp(m+ r, m) = 2sp(m, m) + sp(r, m) = 2sp(1, m) + sp(r, m), we obtain the desired
result

sp(mv + r, m) = 2sp(v, m) + 2sp(v− 1, m) + · · ·+ 2sp(2, m) + 2sp(1, m) + 1. �

Corollary 1. Given integers m ≥ 2, then for any j ≥ 0 and a fixed v ∈ {0, 1, . . . , m},

sp(mj(mv + r), m) = 2v + 1, 1 ≤ r ≤ m− 1.

Proof. By applying j-times of the first part of the recurrence (1.1), we obtain
sp(mj(mv + r), m) = sp(mv + r, m). The last equality in Theorem 3 gives

sp(mv + r, m) = 1 + 2
v

∑
i=1

sp(i, m), 0 ≤ v ≤ m, 1 ≤ r < m.

Using (1.1), for 1 ≤ i ≤ m− 1, sp(i, m) = 1 and sp(m, m) = 1. Then we obtain

sp(mv + r, m) = 1 + 2
v
∑

i=1
1 = 1 + 2v. Lastly, when v = 0, we have

sp(mv + r, m) = sp(r, m) = 1 + 2(0) = 1, as expected. �

We note the following interesting case v = 0 of Corollary 1.

Online Journal of Analytic Combinatorics, Issue 18 (2023), #02
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Corollary 2. Given an integer m ≥ 2. For 1 ≤ h ≤ m− 1 and i ≥ 0, we have

sp(mih, m) = 1 and sp(mi, m) = 1.

4. Arithmetic Properties

The following two lemmas characterize the values of oc(n, m) to a large extent.

Lemma 4. sp(n, m) is odd for all integers n ≥ 0, m > 1.

Proof. Use the bijection with OC(n, m). Any n has exactly one OC composition into ex-
actly one size of power of m, and all other OC compositions may be paired by whether
they have their smallest part on the left or right. �

Vice versa, the following result is easily deduced from the first part of the relation
(1.1).

Corollary 3. Given any nonnegative integer v, and 1 ≤ r < m, we have

sp(mj(mv + r), m) = sp(mv + r, m) ∀ j ≥ 0.

We found the following pair of infinite modulo 4 congruences.

Theorem 4. Given any integer m ≥ 2. For all j ≥ 0, we have
(i) sp(2mj + 1, m) ≡ 1 (mod 4),
(ii) sp(2mj + m + 1, m) ≡ 3 (mod 4).

Proof. By induction on j. Note that sp(1, m) = 1 and sp(m + 1, m) = 2sp(m, m) +
sp(1) = 3. So the assertion holds for j = 0. Assume that (i) and (ii) hold for all r < j.

Then we first obtain

sp(2mj + 1, m) = 2sp(2mj, m) + sp(2mj + 1−m, m)

= 2sp(2j, m) + sp(2m(j− 1) + m + 1, m).

Then by Lemma 4 sp(2j, m) is odd, say 2u + 1, and the inductive hypothesis gives
sp(2m(j− 1) + m + 1, m) ≡ 3 (mod 4), say 4t + 3. Hence

sp(2mj + 1, m) = 2(2u + 1) + (4t + 3) = 4(u + t) + 5 ≡ 1 (mod 4)

which proves part (i).
To prove part (ii) we have

sp(2mj + m + 1, m) = 2sp(2mj + m, m) + sp(2mj + 1, m)

= 2sp(2j + 1, m) + sp(2mj + 1, m).

Then by Lemma 4 sp(2j + 1, m) is odd, say 2u + 1, and part (i) gives sp(2mj + 1, m) ≡ 1
(mod 4), say 4t + 1. Hence

sp(2mj + m + 1, m) = 2(2u + 1) + (4t + 1) = 4(u + t) + 3 ≡ 3 (mod 4).

�
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Congruences modulo powers of 2 might be expected given the structure of the sets
under discussion, with 2 options at a time for many choices. Perhaps more surprising,
then, are the following congruences modulo 3:

(1) sp(16j + 5, 4) ≡ 0 (mod 3);

(2) sp(49j + 8, 7) ≡ 0 (mod 3);

(3) sp(100j + 11, 10) ≡ 0 (mod 3);
. . . . . . . . . . . . .

These three congruences are contained in the following infinite modulo 3 congruence.

Theorem 5. Given an integer m ≥ 4 such that m ≡ 1 (mod 3). For all 1 ≤ r < m, we have

sp(m2 j + m + r, m) ≡ 0 (mod 3) ∀ j ≥ 0.

We give two proofs below.

First Proof of Theorem 5. We attack the problem from the oc(n, m) characterization as
one-place m-power compositions with multiplicities not divisible by m. For conve-
nience we will denote these OCm compositions.

Begin by noting one group of OCm compositions: valid compositions include (1m2 j+m+r),
(1r, mmj+1), and (mmj+1, 1r), for three.

Next, consider all those compositions that include only m (and no higher powers of
m), and 1. The number of m in the composition determines the number of 1s.

Note that mj is not a valid number of m in the composition, since it is divisible by m;
however, mj− 1, mj− 2, . . . , mj− (m− 1) are all valid numbers of m, and there is always
a number of 1 congruent to r mod m with such choices. Hence there are 2(m− 1) such
compositions, and since m ≡ 1 (mod 3), this collection numbers a multiple of 3.

Since mj − m is not a valid number of m in the composition, but mj − m − 1, . . . ,
mj− (2m− 1) are, similar collections occur until we are down to one part of size m.

Thus compositions in which only parts of size 1 and m occur contribute a multiple
of 3 to the total number of compositions.

Now consider any valid choice of numbers and orderings of powers m2, m3, etc.
Suppose that these form a composition of Cm2. The remaining value to be composed
is m2(j− C) + m + r. In particular, a number of 1s congruent to r mod m must be in
the composition, and some number of m1 ranging from 1 up to m(j− C) + 1 will be in
the composition.

For any valid choice of numbers and arrangement of the powers mi with i ≥ 2, we
now make a similar argument to the “empty” case before. Group the six partitions in
which there are no m1 and the required 1s are on either side of composition, or the four
possible arrangements in which there are m(j− C) + 1 of m1 and exactly r of 1. Of the
other permissible numbers of m1 and 1, there are four valid compositions for each, and
there are a multiple of 3 such groups of compositions, as previously argued. Thus the
total number of OCm compositions of m2 j + m + r is 0 mod 3, as claimed. �

Online Journal of Analytic Combinatorics, Issue 18 (2023), #02
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This argument can likely be generalized to additional congruences.

In order to give a second proof of the theorem, we first prove a crucial lemma.

Lemma 5. If m ≡ 1 (mod 3), then for any integer j ≥ 0,

mj+1

∑
i=1

sp(i, m) ≡ 1 (mod 3).

Proof.
mj+1

∑
i=1

sp(i, m) =
m−1

∑
r=1

sp(r, m) + sp(m, m) +
m−1

∑
r=1

sp(m + r, m) + sp(2m, m)

+
m−1

∑
r=1

sp(2m + r, m) + · · ·+
m−1

∑
r=1

sp(m(j− 1) + r, m)

+ sp(mj, m) + sp(mj + 1, m)

=
j

∑
t=1

sp(mt, m) + sp(mj + 1, m) +
j−1

∑
t=0

m−1

∑
r=1

sp(mt + r, m).

Then using Equation (1.1) and Theorem 3 we obtain
mj+1

∑
i=1

sp(i, m) =
sp(mj + 1, m)− 1

2
+ sp(mj + 1, m) +

j−1

∑
t=0

m−1

∑
r=1

sp(mt + r, m)

=
1
2
(3sp(mj + 1, m)− 1) +

j−1

∑
t=0

m−1

∑
r=1

sp(mt + r, m).(4.1)

But

Ej(m) : =
j−1

∑
t=0

m−1

∑
r=1

sp(mt + r, m) = m− 1 +
j−1

∑
t=1

m−1

∑
r=1

sp(mt + r, m)

= m− 1 +
j−1

∑
t=1

(
2

m−1

∑
r=1

sp(mt, m) +
m−1

∑
r=1

sp(mt + r−m, m)

)
(by Eq. (1.1))

= m− 1 + 2(m− 1)
j−1

∑
t=1

sp(t, m) +
j−2

∑
t=0

m−1

∑
r=1

sp(mt + r, m)

= (m− 1)sp(m(j− 1), m) +
j−2

∑
t=0

m−1

∑
r=1

sp(mt + r, m) (by Th. 3).

Therefore

(4.2) Ej(m) = (m− 1)sp(m(j− 1), m) + Ej−1(m).
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Iterating Equation (4.2) we obtain

Ej(m) = (m− 1)
u

∑
h=1

sp(m(j− h), m) + Ej−u(m), 1 ≤ u ≤ j− 1.

In particular, the case u = j− 1 with E1(m) = m− 1 ≡ 0 (mod 3), implies

Ej(m) ≡ 0 (mod 3).

Consequently, reducing Equation (4.1) modulo 3 gives
mj+1

∑
i=1

sp(i, m) ≡ 1
2
(0− 1) + 0 ≡ 1 (mod 3)

which is the desired result. �

Second Proof of Theorem 5. By Theorem 3,

sp(m2 j + m + r, m) = sp(m(mj + 1) + r, m) = 1 + 2
mj+1

∑
i=1

sp(i, m).

From Lemma 5 the sum is congruent to 1 modulo 3, say 3v + 1 for some v. Hence

sp(m2 j + m + r, m) = 1 + 2(3v + 1) ≡ 0 (mod 3).

This completes the proof. �

5. The m = 2 case: Semi-Pell Compositions and Binary Compositions

When m = 2, the numbers sp(n, 2) coincide with the semi-Pell sequence sp(n), since
they have the same recurrence and initial conditions (see Equations (1.1) and (1.2)). The
generating function for semi-Pell compositions is then (from Equation (2.2))

Q2(x) =
∞

∑
i=0

x2i

1− x2i+1

i−1

∏
t=0

(
1 +

2x2t

1− x2t+1

)
.

It may be observed that in this case, our structural results completely characterize the
sequence mod 4.

Theorem 4 implies that residues mod 4 actually match for the m = 2 case when the
argument is odd: sp(4m + i, 2) ≡ i (mod 4), i.e., the values of sp(n, 2) and n agree
at odd values of n modulo 4. This, combined with Corollary 3, gives a complete
characterization of the residues of sp(n, 2):

Theorem 6. Writing n uniquely as n = 2j(4k + i) with i ∈ {1, 3}, it follows that sp(n, 2) ≡ i
(mod 4).

Andrews in [2] denotes by ob(n) the number of partitions of n into powers of 2, in
which each part size appears an odd number of times. Theorem 6 has the corollary
that, for n ≡ 2i + 1 (mod 4), the number of these in which exactly 2 part sizes appear
is congruent to i mod 2, for each of these correspond to exactly two compositions
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enumerated by oc(n) by reordering, while every n has 1 additional such partition (and
composition) into exactly 1 part size, and those into three or more part sizes correspond
to a multiple of four such compositions.
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