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Abstract. The aim of this work is to establish congruences
(
modp2) involving the

trinomial coefficients (np−1
p−1 )2

and ( np−1
(p−1)/2)2

arising from the expansion of the pow-

ers of the polynomial 1+ x+ x2. In main results we extend some known congruences
involving the binomial coefficients (np−1

p−1 ) and ( np−1
(p−1)/2) and establish congruences

link binomial coefficients and harmonic numbers.

1. Introduction and main results

Many mathematicians studied in the 19-th century congruences of the forms
(2p−1

p−1 ) and ( p−1
(p−1)/2). In 1819, Babbage [1] showed, for any prime number p ≥ 3, the

congruence (
2p− 1
p− 1

)
≡ 1

(
modp2

)
.

In 1862, Wolstenholme [18] proved, for any prime number p ≥ 5, that the above
congruence can be extended to(

2p− 1
p− 1

)
≡ 1

(
modp3

)
.

In 1895, Morley [15] proved, for any prime number p ≥ 5, that(
p− 1

(p− 1) /2

)
≡ (−1)(p−1)/2 4p−1

= (−1)(p−1)/2 (1 + pq2)
2
(

modp3
)

,

where qa is the Fermat quotient defined for a given prime number p by

qa = qa (p) :=
ap−1 − 1

p
, a ∈ Z−pZ,

and Z denotes the set of the integer numbers.
In 1900, Glaisher [9] proved, for any prime number p ≥ 5, that the above congruence
can also be extended to (

np− 1
p− 1

)
≡ 1

(
modp3

)
, n ≥ 1.
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Also, in 1953, Carlitz [6, 7] improved, for any prime number p ≥ 5, Morley’s con-
gruence to

(−1)
p−1

2

(
p− 1

(p− 1) /2

)
≡ 4p−1 +

p3

12

(
modp4

)
.

Many mathematicians have been interested to generalize the congruence of Wostenhlom
and Morly, such the works of Zhao [19], McIntosh [13], Meštrović [14], Bencherif
et al. [3] and Sun [16]. Recently, Sun [17] gave some properties and congruences

involving the coefficients
(

n
k

)
2

defined by

(
1 + x + x2

)n
=

2n

∑
k=0

(
n
k

)
2
xk.

See also Cao & Pan [4] and Cao & Sun [5].
The ring of p-integers Z(p) is the set of rational numbers whose denominator is not
divisible by p. For all integers x and y of Z(p) and for any prime number p, we say
that x is congruent to y modulo p and to write then

x ≡ y (modp).

if and only if we have
num(x− y) ∈ pZ.

The idea of this work is inspired from the congruences given by Wolstenholme and
Morly. We study congruences modulo p2 for the trinomial coefficients (np−1

p−1 )2
and

( np−1
(p−1)/2)2

. We prove congruences involving trinomial coefficients, binomial coeffi-
cients and harmonic numbers.
Our main results are given as follows.

Theorem 1.1. Let p ≥ 5 be a prime number and n be a positive integer. We have

(1)
(

np− 1
p− 1

)
2
≡
{

1 + npq3
(
modp2) if p ≡ 1 (mod3) ,

−1− npq3
(
modp2) if p ≡ 2 (mod3) .

and

(2)
(np− 1

p−1
2

)
2

≡

 1 + np
(

2q2 +
1
2 q3

) (
modp2) if p ≡ 1 (mod6) ,

−1
2 npq3

(
modp2) if p ≡ 5 (mod6) .

Theorem 1.2. For every prime number p ≥ 5 we have

(3)

p−1
2

∑
k=0

(
2k
k

)
Hk ≡

{
−q3 (modp) if p ≡ 1 (mod3) ,

q3 (modp) if p ≡ 2 (mod3) ,

and

(4)

[
p−1

4

]
∑
k=1

(4k
2k)
(

2H2k−Hk
4k

)
≡

 − (−1)
p−1

2 q3
2 ( modp) if p ≡ 1 (mod6) ,

(−1)
p−1

2 q3
2 (modp) if p ≡ 5 (mod6) ,



ELEMENTARY PROOF OF CONGRUENCES INVOLVING COEFFICIENTS. . . 3

where Hn to be the n-th harmonic number defined by

H0 = 0, Hn = 1 +
1
2
+ · · ·+ 1

n
.

Proposition 1.3. Let p ≥ 5 be a prime number and n be a positive integer. Then

(5)
p−1

∑
k=0

(
np− 1

k

)
2
≡
{

1 + npq3
(
modp2) if p ≡ 1 (mod3) ,

0
(
modp2) if p ≡ 2 (mod3)

and

(6)

p−1
2

∑
k=0

(np−1
k )2 ≡

 1 + np
(

4
3 q2 + q3

) (
modp2) if p ≡ 1 (mod6) ,

−2
3 npq2

(
modp2) if p ≡ 5 (mod6) .

For k ≤ p− 1, since

(7)
(

np− 1
k

)
= (−1)k

k

∏
i=1

(
1− np

i

)
≡ (−1)k (1− npHk)

(
modp2

)
we conclude that (np2−1

k ) ≡ (−1)k (mod p2) .

A similar congruence for the coefficients (np2−1
k )2 is given as follows:

Corollary 1.4. Let p ≥ 5 be a prime number and n, k be integers with n ≥ 1 and k ∈
{0, 1, . . . , p− 1} . We have

(8)
(

np2 − 1
k

)
2
≡


1
(
modp2) if k ≡ 0 (mod3) ,

−1
(
modp2) if k ≡ 1 (mod3) ,

0
(
modp2) if k ≡ 2 (mod3) .

2. Some basic congruences

In this section, we give some congruences involving harmonic numbers and tri-
nomial coefficients in order to prove the main theorems.

Lemma 2.1. [8, 10, 12] Let p be a prime number. We have

H[p/2] ≡ −2q2 (modp) , p ≥ 3,(9)

H[p/3] ≡ −
3
2

q3 (modp) , p ≥ 5,(10)

H[p/6] ≡ −2q2 −
3
2

q3 ( modp) , p ≥ 5.(11)

Lemma 2.2. For any prime number p ≥ 3 we have

Hp−k ≡ Hk−1 (modp) , 1 ≤ k ≤ p− 1,(12)

H p−1
2 −k ≡ −2q2 + 2H2k − Hk (modp) , 1 ≤ k ≤ p−1

2 .(13)
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Proof. When k ∈ {1, 2, . . . , p− 1} , we have

Hp−k =
p−k

∑
i=1

1
i

=
p−1

∑
i=1

1
i
−

p−1

∑
i=p−k+1

1
i

= Hp−1 −
k−1

∑
i=1

1
p− k + i

.

Then, since Hp−1 ≡ 0 (mod p) we get

Hp−k ≡
k−1

∑
i=1

1
k− i

= Hk−1 (mod p) .

Similarly, if k ∈ {1, 2, . . . , (p− 1) /2} , we get

H(p−1)/2−k =
(p−1)/2−k

∑
j=1

1
j

=
(p−1)/2

∑
j=1

1
j
−

(p−1)/2

∑
j=(p−1)/2−k+1

1
j

= H(p−1)/2 −
2

p− 1
−

(p−3)/2

∑
j=(p−1)/2−k+1

1
j

= H(p−1)/2 −
2

p− 1
−

k−1

∑
j=1

1
(p− 1) /2− j

= H(p−1)/2 −
2

p− 1
−

k−1

∑
j=1

2
p− 1− 2j

,

and since H(p−1)/2 ≡ −2q2 (modp) [8], we conclude that

H(p−1)/2−k ≡ −2q2 + 2 + 2
k−1

∑
j=1

1
2j + 1

= −2q2 + 2 + 2

(
2k−1

∑
j=1

1
j
−

k−1

∑
j=1

1
2j
− 1

)
= −2q2 + 2H2k−1 − Hk−1

= −2q2 + 2H2k − Hk (modp) .
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Lemma 2.3. Let p ≥ 5 be a prime number. Then, if p ≡ 1 (mod 3) we obtain

(p−4)/3

∑
k=0

1
3k + 2

≡ 0 (modp) ,(14)

(p−4)/3

∑
k=0

1
3k + 1

≡ 1
2

q3 (modp) ,(15)

and if p ≡ 2 (mod 3) we obtain

(p−5)/3

∑
k=0

1
3k + 1

≡ 1 (modp) ,(16)

(p−5)/3

∑
k=0

1
3k + 2

≡ 1
2

q3 (modp) .(17)

Proof. For any prime number p ≡ 1 (mod3) , we have

(p−4)/3

∑
k=0

1
3k + 2

=
(p−4)/3

∑
k=0

1

3
(

p−4
3 − k

)
+ 2

≡ −
(p−4)/3

∑
k=0

1
2 + 3k

(modp)

and this gives the congruence (14). From the identity

(p−4)/3

∑
k=0

1
3k + 1

+
(p−4)/3

∑
k=0

1
3k + 2

+
(p−4)/3

∑
k=0

1
3k + 3

=
p−1

∑
k=1

1
k

and by the congruences Hp−1 ≡ 0 (modp) and ( 10) it results

(p−4)/3

∑
k=0

1
3k + 1

= Hp−1 −
1
3

H[p/3] −
(p−4)/3

∑
k=0

1
3k + 2

≡ 0 +
1
2

q3 − 0

≡ 1
2

q3 (modp)

which gives the congruence (15).
Also, if p ≡ 2 (mod3) , the other congruences can be proved similarly.

Lemma 2.4. For any prime number p ≥ 5 we have

(p−1)/6

∑
k=0

1
2k + 1

≡ q2 −
3
4

q3 +
3
2

(modp) if p ≡ 1 (mod6) ,(18)

(p−5)/6

∑
k=0

1
2k + 1

≡ q2 −
3
4

q3 (modp) if p ≡ 5 (mod6) .(19)
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Proof. For p ≡ 1 (mod6) use the congruence (10) to obtain

(p−1)/6

∑
k=0

1
2k + 1

+
(p−1)/6

∑
k=1

1
2k

=
(p−1)/3+1

∑
k=1

1
k
= H[p/3] +

3
p + 2

≡ −3
2

q3 +
3
2

(modp) ,

and for p ≡ 5 (mod6) use the congruence (10 ) to obtain

(p−5)/6

∑
k=0

1
2k + 1

+
(p−5)/6

∑
k=1

1
2k

=
(p−2)/3

∑
k=1

1
k
= H[p/3] ≡ −

3
2

q3 (modp) .

So, by (11) it results

[p/6]

∑
k=0

1
2k

=
1
2

H[p/6] ≡ −q2 −
3
4

q3 (modp) ,

from which the desired congruences follow.

Lemma 2.5. Let p be a prime number.
Then, for p ≡ 1 (mod 6) we have

(p−1)/6

∑
k=0

1
3k + 1

≡ −2
3

q2 + 2 (modp) ,(20)

(p−1)/6

∑
k=0

1
3k + 2

≡ −2
3

q2 +
1
2

q3 +
2
3

(modp) ,(21)

and, for p ≡ 5 (mod 6) we have

(p−5)/6

∑
k=0

1
3k + 1

≡ 1
2

q3 −
2
3

q2 (modp) ,(22)

(p−5)/6

∑
k=0

1
3k + 2

≡ −2
3

q2 (modp) .(23)
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Proof. For p ≡ 1 (mod6) , by the congruences (17) and (18) we get

(p−1)/6

∑
k=0

1
3k + 2

= 2
(p−1)/6

∑
k=0

1
6k + 4

= 2
(p−1)/3

∑
k=0

1
6k + 4

− 2
(p−1)/3

∑
k=(p−1)/6+1

1
6k + 4

=
(p−1)/3

∑
k=0

1
3k + 2

− 2
(p−1)/6

∑
k=1

1
6k + p + 3

≡ 1− 2
3

(p−1)/6

∑
k=1

1
2k + 1

≡ 1− 2
3

(
q2 −

3
4

q3 +
1
2

)
= −2

3
q2 +

1
2

q3 +
2
3

(modp) .

We also have

(p+5)/2

∑
k=1

1
k
=

(p−1)/6

∑
k=0

1
3k + 1

+
(p−1)/6

∑
k=0

1
3k + 2

+
1
3

(p−1)/6

∑
k=0

1
k + 1

which gives on using the congruences (9), (11) and (21)

(p−1)/6

∑
k=0

1
3k + 1

≡
(p+5)/2

∑
k=1

1
k
−

(p−1)/6

∑
k=0

1
3k + 2

− 1
3

(p−1)/6

∑
k=0

1
k + 1

= H[p/2] +
2

p + 5
+

2
p + 3

+
2

p + 1

−
(p−1)/6

∑
k=0

1
3k + 2

− 1
3

(
H[p/6] +

6
p + 5

)
≡ −2q2 +

8
3
−
(
−2

3
q2 +

1
2

q3 +
2
3

)
− 1

3

(
−2q2 −

3
2

q3

)
= −2

3
q2 + 2 (modp) .
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For p ≡ 5 (mod6) use the congruence (17) to get

(p−5)/6

∑
k=0

1
3k + 2

= 2
(p−5)/3

∑
k=0

1
6k + 4

− 2
(p−5)/3

∑
k=(p−5)/6+1

1
6k + 4

=
(p−5)/3

∑
k=0

1
3k + 2

− 2
(p−5)/6

∑
k=1

1
6k + p− 1

≡ 1
2

q3 − 2
(p−5)/6

∑
k=1

1
6k− 1

(modp) .

by setting k = (p + 1) /6− j and using (11) this last congruence becomes

(p−5)/6

∑
k=1

1
6k− 1

≡ −1
6

(p−5)/6

∑
j=1

1
j
= −1

6
H[p/6] ≡

1
3

q2 +
1
4

q3 (modp) ,

hence
(p−5)/6

∑
k=0

1
3k+2 ≡

1
2 q3 − 2

(
1
3 q2 +

1
4 q3

)
≡ −2

3 q2 (modp) . We also have

(p−5)/6

∑
k=0

1
3k + 1

+
(p−5)/6

∑
k=0

1
3k + 2

+
1
3

(p−5)/6

∑
k=0

1
k + 1

=
(p+1)/2

∑
k=1

1
k

and by using the congruences (9), (10) and (23) this gives

(p−5)/6

∑
k=0

1
3k + 1

=

(
2

p + 1
+ H[p/2]

)
− 1

3

(
6

p + 1
+ H[p/6]

)
−

(p−5)/6

∑
k=0

1
3k + 2

≡ 1
2

q3 −
2
3

q2 (modp) .

Proposition 2.6. Let p ≥ 5 be a prime number and n, k be positive integers. We have(
np− 1

3k

)
2
≡ 1− np

(
2
3

Hk +
k−1

∑
j=0

1
3j + 2

) (
modp2

)
, k ≤ p−1

3 ,(24)

(
np− 1
3k + 1

)
2
≡ −1 + np

(
2
3

Hk +
k

∑
j=0

1
3j + 1

) (
modp2

)
, k ≤ p−2

3 ,(25)

(
np− 1
3k + 2

)
2
≡ np

(
−

k

∑
j=0

1
3j + 1

+
k

∑
j=0

1
3j + 2

) (
modp2

)
, k ≤ p−3

3 .(26)
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Proof. From the expansion

(
1 + x + x2

)n
=

(
x + ei π

3

)n (
x + e−i π

3

)n

= ∑
k≥0

(
k

∑
j=0

(
n
j

)(
n

k− j

)
e(k−2j)i π

3

)
xk

we deduce the identity

(27)
(

n
k

)
2
=

k

∑
j=0

(
n
j

)(
n

k− j

)
cos

(k− 2j)π

3
.

and by the congruence (7) and the identity (27) we get

(
np− 1

k

)
2

=
k

∑
j=0

(
np− 1

j

)(
np− 1
k− j

)
cos

(k− 2j)π

3

≡ (−1)k
k

∑
j=0

(
1− np

(
Hj + Hk−j

))
cos

(k− 2j)π

3

= (−1)k
k

∑
j=0

(
1− 2npHj

)
cos

(k− 2j)π

3

(
modp2

)
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Then, for the congruence (24), we have

(
np− 1

3k

)
2
≡

3k

∑
j=0

cos
2jπ

3
− 2np

3k

∑
j=0

Hj cos
2jπ

3

= 1− 2np
3k

∑
j=0

Hj cos
2jπ

3

= 1− np

(
2

k

∑
j=0

H3j −
k−1

∑
j=0

H3j+1 −
k−1

∑
j=0

H3j+2

)

= 1− np

(
k−1

∑
j=0

(
2H3j − H3j+1 − H3j+2

)
+ 2H3k

)

= 1− 2npH3k + np

(
2

k−1

∑
j=0

1
3j + 1

+
k−1

∑
j=0

1
3j + 2

)

= 1− 2np

(
k−1

∑
j=0

1
3j + 1

+
k−1

∑
j=0

1
3j + 2

+
k

∑
j=1

1
3j

)

+ np

(
2

k−1

∑
j=0

1
3j + 1

+
k−1

∑
j=0

1
3j + 2

)

= 1− np

(
2
3

Hk +
k−1

∑
j=0

1
3j + 2

) (
modp2

)
.

For the congruence (25) we have

(
np− 1
3k + 1

)
2

≡ −
3k+1

∑
j=0

cos
(2j− 1)π

3
+ 2np

3k+1

∑
j=0

Hj cos
(2j− 1)π

3

= −1 + 2np
3k+1

∑
j=0

Hj cos
(2j− 1)π

3

= −1 + np

(
k

∑
j=0

(
H3j + H3j+1 − 2H3j+2

)
+ 2H3k+2

)
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= −1 + np

(
−

k

∑
j=0

1
3j + 1

− 2
k

∑
j=0

1
3j + 2

)

+ np
(

2H3k +
2

3k + 1
+

2
3k + 2

)
= −1 + 2npH3k + np

(
−

k−1

∑
j=0

1
3j + 1

− 2
k−1

∑
j=0

1
3j + 2

+
1

3k + 1

)

= −1 + 2np

(
k−1

∑
j=0

1
3j + 1

+
k−1

∑
j=0

1
3j + 2

+
k

∑
j=1

1
3j

)

+ np

(
−

k−1

∑
j=0

1
3j + 1

− 2
k−1

∑
j=0

1
3j + 2

+
1

3k + 1

)

= −1 + np

(
2
3

Hk +
k

∑
j=0

1
3j + 1

) (
modp2

)
.

For the congruence (26) we have

(
np− 1
3k + 2

)
2
≡

3k+2

∑
j=0

cos
(2j− 2)π

3
− 2np

3k+2

∑
j=0

Hj cos
(2j− 2)π

3

= −2np
3k+2

∑
j=0

Hj cos
(2j− 2)π

3

= np

(
k

∑
j=0

(
H3j − 2H3j+1 + H3j+2

))

≡ np

(
−

k

∑
j=0

1
3j + 1

+
k

∑
j=0

1
3j + 2

) (
modp2

)
.

3. Proof of the main results

Proof of Theorem 1.1. For p ≡ 1 (mod3) let 3k = p− 1 in the congruence ( 24). Then,
by the congruences (10) and (14) we obtain

(
np− 1
p− 1

)
2
≡ 1− np

(
2
3

H(p−1)/3 +
(p−4)/3

∑
k=0

1
3j + 2

)
≡ 1 + npq3

(
modp2

)
.

Online Journal of Analytic Combinatorics, Issue 18 (2023), #03
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For p ≡ 2 (mod3) let 3k + 1 = p− 1 in the congruence (25). Then, by the congru-
ences (10) and (16) we obtain

(
np− 1
p− 1

)
2
≡ −1 + np

(
2
3

H(p−2)/3 +
(p−2)/3

∑
j=0

1
3j + 1

)
≡ −1− npq3

(
modp2

)
.

For p ≡ 1 (mod6) let 3k = (p− 1) /2 in the congruence (24). Then, by the congru-
ences (11) and (20) we obtain

(
np− 1

3k

)
2
≡ 1− np

(
2
3

Hk +
k−1

∑
j=0

1
3j + 2

)

≡ 1 + np
(

2q2 +
1
2

q3

) (
modp2

)
.

For p ≡ 5 (mod6) let 3k + 2 = (p− 1) /2 in the congruence (26). Then, by the
congruences (22) and (23) we obtain

(
np− 1

(p− 1) /2

)
2
≡ np

(
−

(p−5)/6

∑
j=0

1
3j + 1

+
(p−5)/6

∑
j=0

1
3j + 2

)

≡ −1
2

npq3

(
modp2

)
.

Proof of Theorem 1.2. By the known identity [2, Eq. 1.5]

(28)
(

np− 1
p− 1

)
2
=

p−1

∑
k=(p−1)/2

(
np− 1

k

)(
k

p− 1− k

)

we have(
np− 1
p− 1

)
2
=

p−1

∑
k=(p−1)/2

(
np− 1

k

)(
k

p− 1− k

)

≡
p−1

∑
k=(p−1)/2

(−1)k (1− npHk)

(
k

p− 1− k

)

=
(p−1)/2

∑
k=0

(−1)k
(

p− 1− k
k

) (
1− npHp−1−k

) (
modp2

)
.
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So, by the congruence

(
p− 1− k

k

)
=

(
p− 1

2k

)
(

p− 1
k

)(2k
k

)

≡ (−1)k
(

2k
k

)
(modp) , k ∈

{
0, . . . ,

p− 1
2

}
,

the identity [11, Cor. 2.8]

(29)
[n/2]

∑
k=0

(−1)k
(

n− k
k

)
=

{
0 if n ≡ 2 (mod3) ,

(−1)[n/3] otherwise

and the congruence (12) we get

(
np− 1
p− 1

)
2
≡ (−1)[(p−1)/3] − np

(p−1)/2

∑
k=0

(
2k
k

)
Hk

(
modp2

)
.

We note here that (−1)[(p−1)/3] = 1 if p ≡ 1 (mod3) and
(−1)[(p−1)/3] = −1 if p ≡ 2 (mod3) .
Hence, by combining this congruence with the congruence (1), we obtain the con-
gruence (3). By the identity [2, Eq. 1.5] we have

(
np− 1

(p− 1) /2

)
2

=
(p−1)/2

∑
k=0

(
np− 1

k

)(
k

(p− 1) /2− k

)

≡
(p−1)/2

∑
k=0

(−1)k (1− npHk)

(
k

(p− 1) /2− k

)

= (−1)(p−1)/2
(p−1)/2

∑
k=0

(−1)k
(
(p− 1) /2− k

k

)

− (−1)
p−1

2 np

p−1
2

∑
k=0

(−1)k
(
(p− 1) /2− k

k

)
H p−1

2 −k

(
modp2

)
.

Online Journal of Analytic Combinatorics, Issue 18 (2023), #03
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Then, by the congruence (13) the last congruence can be written as(
np− 1

(p− 1) /2

)
2

≡ (−1)
p−1

2 (1 + 2npq2)

[
p−1

4

]
∑
k=0

(−1)k
( p−1

2 − k
k

)

− (−1)
p−1

2 np

[
p−1

4

]
∑
k=1

(−1)k
( p−1

2 − k
k

)
(2H2k − Hk)

(
modp2

)
.

But for k ∈ {1, 2, . . . , [(p− 1) /4]} we have

(−1)k
( p−1

2 − k
k

)
= (−1)k (p− (2k + 1)) (p− (2k + 3)) · · · (p− (4k− 1))

2kk!

≡ (2k + 1) (2k + 3) · · · (4k− 1)
2kk!

=
1
4k

(
4k
2k

)
(modp) ,

hence (
np− 1

(p− 1) /2

)
2

≡ (−1)
p−1

2 (1 + 2npq2)

[
p−1

4

]
∑
k=0

(−1)k
( p−1

2 − k
k

)
(30)

− (−1)
p−1

2 np

[
p−1

4

]
∑
k=1

(
4k
2k

)(
2H2k − Hk

4k

) (
modp2

)
.

Then, for p ≡ 1 (mod6) , the identity (29) shows that we have

(p−1)/2

∑
k=0

(−1)k
(
(p− 1) /2− k

k

)
= (−1)[(p−1)/6] ,

and since (−1)(p−1)/2+[(p−1)/6] = 1, the congruence (30) becomes(np− 1
p−1

2

)
2

≡ 1 + npq2 − (−1)
p−1

2 np

[
p−1

4

]
∑
k=1

1
4k

(
4k
2k

)
(2H2k − Hk)

(
modp2

)
,
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and by combining this congruence with the congruence (2), we obtain the congru-
ence (4). Also, for p ≡ 5 (mod6) , the identity (29) shows that we have

(p−1)/2

∑
k=0

(−1)k
(
(p− 1) /2− k

k

)
= 0,

so the congruence (30) becomes(
np− 1

(p− 1) /2

)
2

≡ − (−1)(p−1)/2 np
[(p−1)/4]

∑
k=1

1
4k

(
4k
2k

)
(2H2k − Hk)

(
modp2

)
,

and by combining this congruence with the congruence (2), we obtain the congru-
ence (4).

Proof of Proposition 1.3. For k ∈ {0, . . . , [p/3]− 1}, from Proposition 2.6 we may state

(31)
(

np− 1
3k

)
2
+

(
np− 1
3k + 1

)
2
+

(
np− 1
3k + 2

)
2
≡ np

3k + 2

(
modp2

)
, .

To prove the congruences (5) let

p−1

∑
j=0

(
np− 1

j

)
2

=

[
p−1

3

]
∑
j=0

(
np− 1

3j

)
2
+

[
p−2

3

]
∑
j=0

(
np− 1
3j + 1

)
2
+

[
p−3

3

]
∑
j=0

(
np− 1
3j + 2

)
2
.

For p ≡ 1 (mod3) , by the congruences (31), ( 1) and (14), we get

p−1

∑
j=0

(
np− 1

j

)
2

=

p−1
3

∑
j=0

(
np− 1

3j

)
2
+

p−1
3 −1

∑
j=0

(
np− 1
3j + 1

)
2
+

p−1
3 −1

∑
j=0

(
np− 1
3j + 2

)
2

≡
(

np− 1
p− 1

)
2
+

p−4
3

∑
j=0

[(
np− 1

3j

)
2
+

(
np− 1
3j + 1

)
2

(
np− 1
3j + 2

)
2

]

≡
(

np− 1
p− 1

)
2
+ np

p−4
3

∑
j=0

1
3j + 2

≡ 1 + npq3

(
modp2

)
.

Online Journal of Analytic Combinatorics, Issue 18 (2023), #03



16 LAID ELKHIRI AND MILOUD MIHOUBI

For p ≡ 2 (mod3) , by the congruences (31), ( 24), (10), (1) and (17), we get

p−1

∑
j=0

(
np− 1

j

)
2

=

p−2
3

∑
j=0

(
np− 1

3j

)
2
+

p−2
3

∑
j=0

(
np− 1
3j + 1

)
2
+

p−2
3 −1

∑
j=0

(
np− 1
3j + 2

)
2

≡
(

np− 1
p− 2

)
2
+

(
np− 1
p− 1

)
2
+ np

p−5
3

∑
j=0

1
3j + 2

≡ 1− np

2
3

H(p−2)/3 +

p−5
3

∑
j=0

1
3j + 2

+ (−1− npq3) +
(npq3

2

)
≡ 1− np

(
2
3

(
−3

2
q3

)
+

1
2

q3

)
− 1− 1

2
npq3

= 0
(

modp2
)

.

To prove the congruence (6) let

(p−1)/2

∑
j=0

(
np− 1

j

)
2

=
[(p−1)/6]

∑
j=0

(
np− 1

3j

)
2
+

[(p−3)/6]

∑
j=0

(
np− 1
3j + 1

)
2
+

[(p−5)/6]

∑
j=0

(
np− 1
3j + 2

)
2
.

For p ≡ 1 (mod6) , by the congruences (31), ( 1) and (21), we obtain

(p−1)/2

∑
k=0

(
np− 1

k

)
2

=

p−1
6

∑
j=0

(
np− 1

3j

)
2
+

p−1
6 −1

∑
j=0

(
np− 1
3j + 1

)
2
+

p−1
6 −1

∑
j=0

(
np− 1
3j + 2

)
2

≡ (
np−1

p−1
2

)
2
+

p−7
6

∑
j=0

[
(np−1

3j )
2
+ (np−1

3j+1 )2
+ (np−1

3j+2 )2

]

≡
(

np− 1
(p− 1) /2

)
2
+ np

(p−7)/6

∑
j=0

1
3j + 2

≡ 1 + np
(

2q2 +
1
2

q3

)
+ np

(
−2

3
q2 +

1
2

q3

)
= 1 + np

(
4
3

q2 + q3

) (
modp2

)
.
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For p ≡ 5 (mod6) , by the congruences (31) and (21), we obtain

(p−1)/2

∑
k=0

(
np− 1

k

)
2

=
(p−5)/6

∑
j=0

(
np− 1

3j

)
2
+

(p−5)/6

∑
j=0

(
np− 1
3j + 1

)
2
+

(p−5)/6

∑
j=0

(
np− 1
3j + 2

)
2

≡
(p−5)/6

∑
j=0

[(
np− 1

3j

)
2
+

(
np− 1
3j + 1

)
2
+

(
np− 1
3j + 2

)
2

]

≡ np
(p−5)/6

∑
j=0

1
3j + 2

≡ −2
3

npq2

(
modp2

)
.

Proof of Corollary 1.4. Corollary 1.4 follows easily from Proposition 2.6.
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