ELEMENTARY PROOF OF CONGRUENCES INVOLVING
TRINOMIAL COEFFICIENTS FOR BABBAGE AND MORLEY

LAID ELKHIRI AND MILOUD MIHOUBI

AssTrACT. The aim of this work is to establish congruences (modp?) involving the

trinomial coefficients (”pp :11)2 and ( (;f ;)1/2)2 arising from the expansion of the pow-

ers of the polynomial 1+ x + x2. In main results we extend some known congruences

involving the binomial coefficients ("pp 1) and ((p"f ;)1/2) and establish congruences
link binomial coefficients and harmonic numbers.

1. INTRODUCTION AND MAIN RESULTS

Many mathematicians studied in the 19-th century congruences of the forms
(*P~1) and ( (pri ! ). In 1819, Babbage [1] showed, for any prime number p > 3, the

p—1 1)/2
(2;__11) =1 (modpz) .

congruence
In 1862, Wolstenholme [18] proved, for any prime number p > 5, that the above
congruence can be extended to

(77) =1 (moar®).

In 1895, Morley [15] proved, for any prime number p > 5, that

where g, is the Fermat quotient defined for a given prime number p by

aP~1 -1
Ga = qa (p) = — € Z-pZ,

and Z denotes the set of the integer numbers.
In 1900, Glaisher [9] proved, for any prime number p > 5, that the above congruence

can also be extended to
np—1 _ 3 S
(P—1> =1 (modp ), n>1.

(_1)(p—1)/2 4p—1

Date: August 12, 2024.

2020 Mathematics Subject Classification. Primary: 11A07; Secondary: 11B65, 05A10.

Key words and phrases. Binomial coefficients, trinomial coefficients, harmonic numbers,
congruences.



2 LAID ELKHIRI AND MILOUD MIHOUBI

Also, in 1953, Carlitz [6, 7] improved, for any prime number p > 5, Morley’s con-

gruence to
-1 -1 _ 3
(—1) 2 <(pp_ 1)/2> =47 1+% <m0dp4>.

Many mathematicians have been interested to generalize the congruence of Wostenhlom
and Morly, such the works of Zhao [19], McIntosh [13], Mestrovié¢ [14], Bencherif
et al. [3] and Sun [16]. Recently, Sun [17] gave some properties and congruences

involving the coefficients defined by

n
kZ
2n

<1+x—|—x2)n =Y <Z)2xk.

k=0
See also Cao & Pan [4] and Cao & Sun [5].
The ring of p-integers Z ;) is the set of rational numbers whose denominator is not
divisible by p. For all integers x and y of Z,) and for any prime number p, we say
that x is congruent to y modulo p and to write then
x =y (modp).
if and only if we have
num(x — y) € pZ.
The idea of this work is inspired from the congruences given by Wolstenholme and
Morly. We study congruences modulo p? for the trinomial coefficients (npp:1l)2 and
((;f ;)1/2)2. We prove congruences involving trinomial coefficients, binomial coeffi-
cients and harmonic numbers.
Our main results are given as follows.

Theorem 1.1. Let p > 5 be a prime number and n be a positive integer. We have

) (np - 1) [ 14npgs (modp?) if p=1 (mod3),
p—1/), | —1—npgs (modp?) if p=2 (mod3).
and

) <np_—1 1) _ { 1+np <2q2 + %q3> (modp?) if p=1 (mod6),
2

T —Inpqs (modp?) if p=5 (mod6).

Theorem 1.2. For every prime number p > 5 we have

3) 3 (2’<) { —g3 (modp) ifp=1 (mod3),

Hk = .
g3 (modp) ifp=2 (mod3),

and

(4) [g} ) <2H2k_Hk> = { -(-)'T % (modp) ifp=1 (mods),
(-1) 7 £ (modp) ifp=5 (mod6),
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where H,, to be the n-th harmonic number defined by

1 1
Hy=0, Hy=1+5+---+—.
2 n

Proposition 1.3. Let p > 5 be a prime number and n be a positive integer. Then

P inp —1 1+ npgs (modp?) ifp=1 (mod3),
®) k;o( k )2 { 0 (modp?) if p=2 (mod3)

and
p-1 4 2 . _
© p 1y { 1+np <§q2 + q3> (modp?) ifp=1 (mod6),
) k /27—

k= —Znpg, (modp?) if p=>5 (mod6).

For k < p —1, since
np—1 k k n k
7) PO ) = DT (1= 2F) = (-1)f (1= npHy) (modp?)
k i=1
we conclude that (”pj(_l) = (—=1)* (mod p?).
A similar congruence for the coefficients (”pi_l) , Is given as follows:

Corollary 1.4. Let p > 5 be a prime number and n, k be integers with n > 1 and k €
{0,1,...,p—1}. We have

1 (modp?) if k=0 (mod3),
) (”pzk_ 1) = { —1((modpg) if k=1 (mod3),
2 0 (modp?) if k=2 (mod3).

2. SOME BASIC CONGRUENCES

In this section, we give some congruences involving harmonic numbers and tri-
nomial coefficients in order to prove the main theorems.

Lemma 2.1. [8, 10, 12] Let p be a prime number. We have

©) Hip/o) = =242 (modp), p =3,

(10) Hyp/a) = 305 (modp), p>5,

(11) Hiy/6) = =242 — g% (modp), p=5.
Lemma 2.2. For any prime number p > 3 we have

(12) H, y = Hi1 (modp), 1<k<p-1,

(13) Hy 1 = ~242+2Hy — Hy (modp), 1 <k < iy
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Proof. When k € {1,2,...,p —1}, we have

p—k 1
Hp—k - 7

i=1

p—1 1 p—1 1

i=1 ! i=p—k+1 !
k—1 1

= H,. 1 —
p—1 _

= k+i

Then, since H, 1 = 0 (mod p) we get

=
; K—i Hi—1 (mod p).

—_

Similarly, if k € {1,2,...,(p —1) /2}, we get

(;7—1)/2—k1
Hp 1)k = Y, =
=1
(p—1 /21 (p—zl)/Z 1
=1 j j:(p—l)/Z—k-l—lj
) (p—3)/2 1
=Hyp_1yo——5— -
= P—1 i i72ks1)
2 k=1 1
—H,. __c :
P72 =1 ];(P—l)/Z—]
k-1
H( 1)/2 — - Z _ 1 I 2]

and since H(,,_1),» = —2q2 (modp) [8], we conclude that

k—1

2k 11 k—
:—2q2+2+2<2——2——1)

= =242 +2Hp 1 — Hg1q
= —2qy + 2Hp, — Hy (modp) .
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Lemma 2.3. Let p > 5 be a prime number. Then, if p =1 (mod 3) we obtain

(r—4)/3 4
(14) L 32 =0 (modp),
(r—4)/3 1 1
(15) Lz R LE (modp),
and if p = 2 (mod 3) we obtain
(r=5)/3 4
(16) };} kL1 =1 (modp),
(r=5)/3 4 1
(17) Y 353 = 3% (modp).

k=0

Proof. For any prime number p = 1 (mod3), we have

(p£/3 1 (pi/S 1
o k+2 & 3(”7_4— >+2
(p—4)/3 1

and this gives the congruence (14). From the identity

DL R DL, o
—+ —+ =) -
& 3k+1 ' & 3k+2 = 3k+3 =k

and by the congruences H, 1 = 0 (modp) and ( 10) it results

(p_im : : (p_im :
= Hy1— Hys — =
p—1 /3
& 3k+1 3T & 3k t2
1
= 0+-z93—0
+2%

1
= §q3 (modp)

which gives the congruence (15).
Also, if p =2 (mod3), the other congruences can be proved similarly. 1

Lemma 2.4. For any prime number p > 5 we have

(18) —— =g — —g3+ = (modp) ifp=1 (mod6),
(19) =0 qu (modp) if p =5 (modb).
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Proof. For p =1 (mod6) use the congruence (10) to obtain

1 3
— 4 — = —=H /3 4+ —
k;) 2k +1 k; 2k &k PPy
3 3
= it (modp),
and for p =5 (mod6) use the congruence (10 ) to obtain
(p—25)/6 1 (p—i)/6 L =23y ( |
—+ = = = Hips3) = =543 (modp
& 2%k+1" & 2k =k AT
So, by (11) it results
prely g 3
kg,) 5% = atp/el = —02 = 443 (modp),
from which the desired congruences follow. 1
Lemma 2.5. Let p be a prime number.
Then, for p = 1 (mod 6) we have
(p—1)/6 1 )
(20) k;o 11— 3" +2 (modp),
/6 2 12
(21) kgo k2- 3RTBT3 (modp),
and, for p = 5 (mod 6) we have
P 1 1 2
(22) kZ%) %L1 - 2% 3 (modp),
(r5)/6 4

p—5 2
(23) ;0 m —ng (modp)

>
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Proof. For p =1 (mod6), by the congruences (17) and (18) we get

(p—1)/6 1 (p—1)/6 1
et
3k+2 & ek+4
(p—1)/3
= 1 -2

& 6k+4 o 6k+4

[l
—_

I
W
VR
=

N

I
I es]
=)

w

+
N |
~

We also have

(p+5)/21  (=)/6 4 (r=1)/6 4 1(1)/6 4
— = - _|_ - + — -
=k = 3k+1 = 3k+2 3 = k+1
which gives on using the congruences (9), (11) and (21)
(P‘i%m 1
= 3k+1
(pt5)/21  (p1)/6 4 1(p—i/é 1
ok = 3k+2 3 = k+1
2 2 2
= H[p/z} + + +
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For p =5 (mod6) use the congruence (17) to get

(r-5)/6 4 (P-9)/3 4 (p—5)/3 1
k_zo k+2 7 ,(_ZO kra ° (%/6+1k—+4
(P—Z5)/3 1 i) 1
& 3kv2 6k+p—1
1 (p—5)/6
= §q3—2 Z a1 (modp) .

k=1

by setting k = (p+ 1) /6 — j and using (11) this last congruence becomes

1

(p—5)/6
& a1

2% 1 1 1
Z i Hyyr6 = 302+ 143 (modp),
':1

O\IH

p
hence Y 55 =343 —2 (%qz + }I%) = —24, (modp) . We also have

(pgm Z‘i 1 1 Z‘i 1 (pg /24
k=0 k=0 3 k=0 k+1 o1k
and by using the congruences (9), (10) and (23) this gives
(p—5)/6 1
= 3k+1
2 1/ 6 P26 1
= (it ) 3 (G tve) - L s
1 2
= 503~ 342 (modp)

np—1 B 2 < p1
(24) ( 3k )2_1 np(Hk+§3+2> (modp),k_ T
(25) np -1 ——1-|—n i (mod 2) k< P2

3k+1 P Pr) ="

O
np—1 _ k k
(26) (3k+2)2_”p< = 03]+1+]Z

0
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Proof. From the expansion

(1—|—x+x2>n = x-l—e’?)n(x—l—e ’g>n

- B0 )+

we deduce the identity

SIS TEARE T

and by the congruence (7) and the identity (27) we get

/\

p—l)
k 2
k np—1\ (np—1 (k—2j)m

];)( j )(k—])cos 3

kk (k=2j)m

]Z;‘) 1—np (Hj+ Hi_;)) cos 3

k .
1*Y. (1 - 2npH;) cos k=2j)m < modpz)
j=0 3
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Then, for the congruence (24), we have

np — 1) & 2jm 3k 2jmt
=) cos—— —2np) H;jcos—
( 3k ), ];) 3 = / 3

3k

Y
=1—2np) Hjcos %T
=0

k k-1 k-1
=1—np|2) Hsj— ) Hsj1— ) Hsio
j=0 j=0 j=0

k-1
=1—mnp (Z (2H3; — Hzjy1 — H3jy2) + 2Hz;
=0

k—zl 1
=1-2npH3+np(2) =———=+ ) —+——=
].:03] +1 ].:OBJ +2

<’<—Zl 1 k—zl 1 i 1)
=1-2np . + . +) .=
].:03]+1 ].203] +2 ].:13]

k—1 1 k—1 1
2 . .
tnp < ]Z3J+1 +]§')3]+2>

=0

3k+1/,
3k+1 (2] . 1) T 3k+1 (2] . 1) T
=— ; oS + 2np 2 HjcosT
j=0 j=0
3k+1 (2] . 1) T

= —1+2np ) _ Hjcos
=0

3
]

k
=—-1+np (Z (H3] + H3j+1 — 2H3]'+2) + 2H3k+2>
=0

)
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ko1 ko1
= 14np |-y — -2y —
P\ 1 32
2 2
+”p<2H3"+3k+1 3k+2)
k—1 k—1
1 1 1
3] 1_223' T 1)
~ 3j + =3j+ +
=—-142np - + - + ) =
].:03]+1 j:03]+2 ].:13]
k—1 k—1
1 1 1
-y - 2
+”’”< 341 ;3j+2+3k+1>

:—1—|—np< Hk+23 1 <modp2>.

+
= —1+2npHs; +np (—

For the congruence (26) we have

B 3k+2 3k+2 _
(np 1) Z cos ) T 2np Z Hj cos u

3k +2 = 3
3k4-2 2i_2
= —2np ) _ Hjcos 2j-2)n
=0 3
k
=np | Y (Hsj — 2Hsj41 + Hzji2)
=0

=n —i;—l— i; <m0d 2>
AN =R =T P

3. PROOF OF THE MAIN RESULTS

Proof of Theorem 1.1. For p =1 (mod3) let 3k = p — 1 in the congruence ( 24). Then,
by the congruences (10) and (14) we obtain

(p—4)/3
np—1\  _ . 2 o
(P—l)z =1 np<3H(”_1)/3+ :;o 3J'+2>

1+ npgs <modp2> .
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For p =2 (mod3) let 3k + 1 = p — 1 in the congruence (25). Then, by the congru-
ences (10) and (16) we obtain

(p—2)/3
np—1\ _ 2 _1
(P_l)z - 1+”p(3H<’7‘2’“+ L 31‘+1>

—1—npgqs (modpz) .

For p =1 (mod6) let 3k = (p — 1) /2 in the congruence (24). Then, by the congru-
ences (11) and (20) we obtain

np—1\  _ . 2 =
( 3k )2 1 ””<3H"+];)3j+2

1+mnp (Zqz + %qg) <modp2> .

For p = 5 (mod6) let 3k +2 = (p—1) /2 in the congruence (26). Then, by the
congruences (22) and (23) we obtain

np —1 (p5)/6 4 (r-5)/6 4
np | — ——— + FERrY
((r)—l) /2)2 g ];) 3j+1 ,;, 3j+2

= —%npqg <modp2>.

Proof of Theorem 1.2. By the known identity [2, Eq. 1.5]

np —1 Rt np—1 k
e (ro).= E
P=1/2 k p—1—k
we have
(), B )6
P=1/2 —popyn\ K p—1-k
p—1 k
= vt ()
k=(p—1)/2 p
(p—1)/2
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So, by the congruence

_ (1) (? p—1
= -0 (%) moap), ke {0 L,
the identity [11, Cor. 2.8]
[n/2] . o
ok (n—kY 0 if n=2 (mod3),
) k;)( Y ( k )_{ (—1)[n/3] otherwise

and the congruence (12) we get

(7))
r—1/,

We note here that (—1)[(p_1)/3] =1if p=1 (mod3) and
(=[P~ = _1if p = 2 (mod3).

(1)1 _ Z) (2k>  (mody?).

13

Hence, by combining this congruence with the congruence (1), we obtain the con-

gruence (3). By the identity [2, Eq. 1.5] we have

((Jlf[)l/z)z

) (p;zli/z (npk_ 1) (-1 /2-1)
B s )
_ ()02 pé/z(_l)k (1728

(e’ npké (—1)f ((p - 1)k/2 - k) Hea , (mods?).

Online Journal of Analytic Combinatorics, Issue 18 (2023), #03
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Then, by the congruence (13) the last congruence can be written as

((Pnf I)1/2>2 )
= (- 1)pT (1+2npgp) [lé] (pT_lk_ )
)T 0 [%} )" (Ple_ k) (2Hy — Hy) (mOdP )

But for k € {1,2,...,[(p —1) /4]} we have

(-1)" (pT_lk_ k)

(1 (P kD) (p = (2K £3)) - (p— (4k—1)

2Fk!

_ (2k+1)(2k+3)--- (4k—1)

N k!

= %(;”,z) (modp),
hence

((Pﬂf I)l/z>2 )
(30) = (1) (1+2npg2) [i] * (pT_lk_ )
o 5 () (255 ()

Then, for p =1 (mod6), the identity (29) shows that we have
~1)/2
(PZ) (_1)k <(p —-1)/2— k) _ (_1)[(;9—1)/6} ,
k=0 k

and since (—1)(P~D/2F(P=1)/6] _ 1 the congruence (30) becomes
np—1
(% )
2 /2
o ']

P—
-1
= 1+npg—(-1)7 24—( > (2Hyy — Hy) (modpz),
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and by combining this congruence with the congruence (2), we obtain the congru-
ence (4). Also, for p =5 (mod6), the identity (29) shows that we have

(p-1)/2
_1k (p—l)/2—k :0,
yoen (MR

so the congruence (30) becomes

((Pnf I)1/2)2

[(p—1)/4] 1 /4k
_ _ 2
Lo i <2k) (2Hp — Hy) (mOdP >,

and by combining this congruence with the congruence (2), we obtain the congru-
ence (4). 1

Proof of Proposition 1.3. Fork € {0,...,[p/3] — 1}, from Proposition 2.6 we may state

np—1 np—1 np—1 np >
G < 3k )2+(3k+1)2+(3k+2>2 i (modr?)

To prove the congruences (5) let
pil (np - 1)
] 2

o

[
=

o, =), =),
0 (" 1)2+ L (3?+11)2+ L (3?+21)2'

For p =1 (mod3), by the congruences (31), ( 1) and (14), we get

(")
j=0 ] 2

I
g

]

]

5, np—1 Ea np —1 Ea np —1
= )+ . + .
Jg( 3j )2 Jg <3]‘|‘1)2 Jg) (3]‘|‘2)2
p—4
() sl ) G ()l
= + . + . .
(P_l 2 ];) 3i /» 3j+1/,\3/+2/,
r—4
_ (np—1 21
_(p—1> Y3

Online Journal of Analytic Combinatorics, Issue 18 (2023), #03
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For p =2 (mod3), by the congruences (31), ( 24), (10), (1) and (17), we get

e
2 N n
=1-np (gH(PZ)B + Zm) + (=1 —npgs) + < l;%)

(23 L) gt
- Tlp 3 2q3 2q3 2”pq3
=0 (modp2>.

To prove the congruence (6) let

- [(p—1)/6] <np _ 1) N [(P—i)/d (np _ 1> N [(p—g/el <np _ 1)
. 3i /5 = \3+1/, o \3j+2 5

For p =1 (mod6), by the congruences (31), ( 1) and (21), we obtain
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For p =5 (mod6), by the congruences (31) and (21), we obtain
(Pg/ 2 <np _ 1)
k=0 k 2
(

B P_ZS)/é(np—1> +(p_25)/6(np—1> +(p_25)/6(np—1>
. 3i /5 3i+1/, i 3i+2/,

j=0 j=0 0
=1 1% ), (), ()]
= 3 /o, 3j+1/, 3j+2),
pum— [ —— 2
=np ];) ek 311P2 (modp ) :

Proof of Corollary 1.4. Corollary 1.4 follows easily from Proposition 2.6. 1
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