
ON TWO CONJECTURES DUE TO SUN

JOHN M. CAMPBELL

Abstract. We prove two conjectures due to Sun concerning binomial-harmonic sums.
First, we introduce a proof of a formula for Catalan’s constant that had been conjectured
by Sun in 2014. Then, using a similar approach as in our first proof, we solve an open
problem due to Sun involving the sequence of alternating odd harmonic numbers. Our
methods, more broadly, allow us to reduce difficult binomial-harmonic sums to finite
combinations of dilogarithms that are evaluable using previously known algorithms.

1. Introduction

In this article, we introduce proofs for two conjectured formulas due to Sun, namely
[12] (cf. [14])

(1)
∞

∑
k=0

(2k
k )

(2k + 1)16k

(
3H2k+1 +

4
2k + 1

)
= 8G

and [13, 14]:

(2)
∞

∑
k=0

(2k
k )

(2k + 1)8k

(
∑

0≤j<k

(−1)j

2j + 1
− (−1)k

2k + 1

)
= −
√

2
16

π2,

where G = ∑∞
k=0

(−1)k

(2k+1)2 denotes Catalan’s constant, and where Hn = 1 + 1
2 + · · ·+ 1

n

denotes the nth entry in the sequence of harmonic numbers. Prior to our proof of (2)
introduced in this article, the problem of proving (2) seems to have been open.

1.1. Preliminaries. We refer to harmonic-type numbers of the following form as alter-
nating odd harmonic numbers:

(3) O(m+1)
n =

n

∑
k=1

(−1)k+1

(2k− 1)m+1 =
(−1)m

m!

∫ 1

0

1− (−1)nx2n

1 + x2 lnm x dx.

We are to make use of the above moment formula, as below, to prove Sun’s conjectured
formula in (2).
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There has been much in the way of research, as of late, concerning colored multiple
zeta values (CMZVs) [3, 4, 11, 15], and the concept of a CMZV provides us with a key
tool used in our proof in Section 3 below. Following [3, 4], we write

ζ(s1, . . . , sk) = ∑
s1>···>sk≥1

1
ns1

1 · · · n
sk
k

and

Ls1,...,sk(a1, . . . , ak) = ∑
s1>···>sk≥1

an1
1 · · · a

nk
k

ns1
1 · · · n

sk
k

to denote, respectively, the multiple zeta function and the colored polylogarithm, where the
value k is referred to as the length and s1 + · · · + sk is referred to as the weight. The
classical dilogarithm function is such that

(4) Li2(z) :=
∞

∑
k=1

zk

k2 .

A CMZV is an expression of the form Ls1,...,sk(a1, . . . , ak) in the case whereby the ar-
guments of the form ai are Nth roots of unity, the indices of the form si are positive
integers, and (ai, si) 6= (1, 1) for all indices i.

Catalan’s constant is notable as a special value of the Dirichlet L-function

L(s, χ) =
∞

∑
k=1

χ(k)
ks ,

with

L (s, χ4) =
∞

∑
k=0

(−1)k

(2k + 1)s ,

letting non-principal Dirichlet characters modulo n be denoted as per usual. We are to
make use of values associated with

L(2, χ6) =
1

36

(
ψ(1)

(
1
6

)
− ψ(1)

(
5
6

))
in our proof introduced in this article that Sun’s conjectured formula in (1) holds true.
The Euler–Mascheroni constant is such that γ = limn→∞

(
Hn− ln n

)
, and we recall that

the digamma function refers to the special function such that the following equalities are
satisfied [10, §9]:

ψ(z) =
d
dz

ln Γ(z) =
Γ′(z)
Γ(z)

= −γ +
∞

∑
n=0

z− 1
(n + 1)(n + z)

.

Writing ψ = ψ(0), the polygamma function is such that

ψ(n)(z) =
dn

dzn ψ(0)(z).
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2. Sun’s formula for G

In 2017, Ablinger [1] had mentioned that his HarmonicSums package may be used to
prove (1), and Chen [8] had recently suggested that a finite sum identity due to Tauraso
[16] could be used to prove (1), but there was no indication given in [8] as to how this
could be achieved.

Theorem 2.1. Sun’s conjectured equality in (1) holds true (cf. [1, 8]).

Proof. We are to make use of the moment formula

(5)
∫ 1

0
(−2k− 1)x2k log(1− x) dx = H2k+1

together with the dominated convergence theorem, in the following manner. By replac-
ing the summand factor H2k+1 in the series

∞

∑
k=0

(2k
k )

(2k + 1)16k H2k+1

with the definite integral in (5), and then rewriting the resultant summand so as to
obtain

∞

∑
k=0

∫ 1

0

(−2k− 1)(2k
k )x2k log(1− x)

(2k + 1)16k dx,

we may reverse the order of the operators ∑∞
k=0 · and

∫ 1
0 · dx according to the domi-

nated convergence theorem. So, by the generalized binomial theorem, we have that the
equality

(6)
∞

∑
k=0

(2k
k )H2k+1

(2k + 1)16k =
∫ 1

0
−2 log(1− x)√

4− x2
dx

holds true. We have determined that an antiderivative for −2 log(1−x)√
4−x2 is as below, and

this is easily seen by differentiating the following expression and simplifying:

− 2

(
iLi2

(
− 2ei sin−1( x

2 )

−i +
√

3

)
+ iLi2

(
2ei sin−1( x

2 )

i +
√

3

)
+

1
2

i sin−1
(x

2

)2

− sin−1
(x

2

)
log

(
1 +

2ei sin−1( x
2 )

−i +
√

3

)
− sin−1

(x
2

)
log

(
1− 2ei sin−1( x

2 )
√

3 + i

)

+ log(1− x) sin−1
(x

2

))
.
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Taking limits as x → 0 and x → 1, this gives us that the definite integral in (6) is equal
to:

2

(
iLi2

(
− 2
−i +

√
3

)
+ iLi2

(
2

i +
√

3

))
− 2iLi2

(
− 2e

iπ
6

−i +
√

3

)
− 13iπ2

36

+
1
3

π log

(
i√
3

)
+

1
3

π log

(
1− e

iπ
6

−
√

3
2 + i

2

)
.

Rewriting the argument of the first dilogarithmic expression shown above as

Li2
(

e−
5iπ

6

)
and then applying a series multisection to (4) according to the residue classes of the in-
dices modulo 6, and similarly for the other dilogarithmic expressions in our evaluation
of (6), this can be used to show that (6) is also equal to

8G
3
− 4iπ2

27
+

1
9

(
−
√

3 + i
)

ψ(1)
(

1
3

)
+

1
9

(√
3 + i

)
ψ(1)

(
2
3

)
,

and this may be confirmed with Mathematica’s FunctionExpand command applied to
our dilogarithmic form for (6). So, we have that Sun’s series in (1) is expressible as

8G− 4iπ2

9
+

1
3

iψ(1)
(

1
3

)
−

ψ(1)
(

1
3

)
√

3
+

1
3

iψ(1)
(

2
3

)
+

ψ(1) (2
3

)
√

3

+ 4
∞

∑
k=0

(2k
k )

(2k + 1)216k .

The series

(7)
∞

∑
k=0

16−k(2k
k )

(1 + 2k)2 = 1.0149416064...

is equal to a well-known mathematical constant known as Gieseking’s constant [2], with
reference to the OEIS entry A143298 and the references therein, and it is known that
Gieseking’s constant is equal to

9− ψ(1) (2
3

)
+ ψ(1)

(
4
3

)
4
√

3
.

To show that the series in (7) is equal to Gieseking’s constant, we may start with the
Maclaurin series for the inverse sine, so as to write

∞

∑
k=0

(2k
k )z

ky2k

2k + 1
=

sin−1 (2y
√

z
)

2y
√

z
,
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and by indefinitely integrating with respect to y, we obtain

1
2
√

z

(
sin−1 (2y

√
z
)

log
(

1− e2i sin−1(2y
√

z)
)

− 1
2

i
(

sin−1 (2y
√

z
)2

+ Li2
(

e2i sin−1(2y
√

z)
)))

,

and this leads us to an expression equivalent to Gieseking’s constant, using previously
known dilogarithmic expressions for this constant. So, we have shown that Sun’s series
in (1) is equal to the following:

8G− 4iπ2

9
+

1
3

iψ(1)
(

1
3

)
−

ψ(1)
(

1
3

)
√

3
+

1
3

iψ(1)
(

2
3

)
+

ψ(1) (2
3

)
√

3

+
9− ψ(1) (2

3

)
+ ψ(1)

(
4
3

)
√

3
.

Since Sun’s series is real-valued, we may omit the complex terms in the above expan-
sion, giving us that Sun’s series equals

8G + 3
√

3−
ψ(1)

(
1
3

)
√

3
+

ψ(1)
(

4
3

)
√

3
.

Applying an index shift to rewrite ψ(1)
(

4
3

)
in terms of ψ(1)

(
1
3

)
, using the relation such

that ψ(1)(z + 1)− ψ(1)(z) = − 1
z2 , this gives us that Sun’s series in (1) is reducible to 8G,

as desired. �

3. Solution to an open problem

Theorem 3.1. Sun’s conjectured equality in (2) holds true.

Proof. From (3), we find that

(8)
k−1

∑
j=0

(−1)j

2j + 1
=
∫ 1

0

1− (−1)kx2k

1 + x2 dx

for each natural number k. Expanding the summand in (2), we obtain the series

(9)
∞

∑
k=0

(
−1

8

)k
(2k

k )

(2k + 1)2 ,

and we may obtain a dilogarithmic form for this expression in virtually exactly the
same way that the closely related expression for Gieseking’s constant [2] in (7) had
been proved in Section 2 in order to prove Sun’s formula in (1). For the sake of brevity,
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we refer to Section 2 for details as to how to prove that the evaluation suggested be-
low holds, noting that Mathematica is able to obtain the following from (9) via the
FunctionExpand command:

√
2Li2

(
−
√

3 + 1√
2

)
−
√

2Li2

(
1−
√

3 + 1√
2

)
+

π2

6
√

2

−
log2

(√
3+1√

2

)
√

2
+
√

2 log

(√
3 + 1√

2

)
log

(
1 +

√
3 + 1√

2

)
.

So, it remains to show that

(10)
∞

∑
k=0

(2k
k )∑k−1

j=0
(−1)j

2j+1

(2k + 1)8k

is equal to the following expression:

π2

24
√

2
−

log2
(√

3+1√
2

)
√

2
+
√

2 log

(√
3 + 1√

2

)
log

(
1 +

√
3 + 1√

2

)

+
√

2Li2

(
−
√

3 + 1√
2

)
−
√

2Li2

(
1−
√

3 + 1√
2

)
.

We replace the summand factor ∑k−1
j=0

(−1)j

2j+1 in (10) with the equivalent integral in (8),
and we rearrange this resultant expression so as to obtain

∞

∑
k=0

∫ 1

0

(2k
k )

(2k + 1)8k
1− (−1)kx2k

1 + x2 dx.

By the dominated convergence theorem, we are allowed to switch the order of the
operators ∑∞

k=0 · and
∫ 1

0 · dx, giving us

∫ 1

0

πx− 4 sinh−1
(

x√
2

)
2
√

2x (x2 + 1)
dx,

according to the generating function given by the Maclaurin series for sinh−1. We
have determined the followed antiderivative for the above integrand, and this may be
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verified by differentiating the following expression and then simplifying:

1
2
√

2

(
2Li2

− (1 + i)esinh−1
(

x√
2

)
√

2

+ 2Li2

− (1− i)esinh−1
(

x√
2

)
√

2


+ 2Li2

 (1− i)esinh−1
(

x√
2

)
√

2

+ 2Li2

 (1 + i)esinh−1
(

x√
2

)
√

2


− 2Li2

(
e2 sinh−1

(
x√
2

))
+ π tan−1(x) + 2 sinh−1

(
x√
2

)

log

1− (1 + i)esinh−1
(

x√
2

)
√

2


+ 2 sinh−1

(
x√
2

)
log

1− (1− i)esinh−1
(

x√
2

)
√

2


+ 2 sinh−1

(
x√
2

)
log

1 +
(1− i)esinh−1

(
x√
2

)
√

2


+ 2 sinh−1

(
x√
2

)
log

1 +
(1 + i)esinh−1

(
x√
2

)
√

2


− 4 sinh−1

(
x√
2

)
log
(

1− e2 sinh−1
(

x√
2

)))
.

Setting x → 1 and x → 0 and then taking the difference, and then subtracting the
dilogarithmic form for (10), it remains to prove that the following expression vanishes:

1
48
√

2

(
12

(
Li2
(
−7− 4

√
3
)
− 8Li2

(
−
√

2 +
√

3
)
− 4Li2

(
2 +
√

3
)

+ 8Li2

(
1−

√
2 +
√

3
)
+ log2

(
2−
√

3
)
+ 4 log

(
2−
√

3
)

log
(

1 +
√

2 +
√

3
)

+ log(16)csch−1
(√

2
))

+ 13π2 − 96iπcsch−1
(√

2
))

.

According to the elementary dilogarithmn identity

Li2(x) + Li2(1− x) =
1
6

π2 − log x log(1− x),
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it remains to prove that the following expression vanishes:

1
48
√

2

(
29π2 − 48iπ

(
2csch−1

(√
2
)
+ log

(
2 +
√

3
))

+ 12

(
csch−1

(√
2
)

log(16)

+ log2
(

2−
√

3
)
− 4 log

(
2 +
√

3
)

log
(
−1 +

√
2 +
√

3
)

+ 4 log
(

2−
√

3
)

log
(

1 +
√

2 +
√

3
)
+ Li2

(
−7− 4

√
3
)
− 8Li2

(
−
√

2 +
√

3
)

− 8Li2

(√
2 +
√

3
)
− 4Li2

(
2 +
√

3
)))

.

Using the elementary dilogarithm identity

Li2(x) + Li2(−x) =
1
2

Li2(x2),

it remains to prove that the following expression vanishes:

29π2

48
√

2
− i
√

2πcsch−1
(√

2
)
+

csch−1
(√

2
)

log(16)

4
√

2
+

log2
(

2−
√

3
)

4
√

2

−
iπ log

(
2 +
√

3
)

√
2

−
log
(

2 +
√

3
)

log
(
−1 +

√
2 +
√

3
)

√
2

+
log
(

2−
√

3
)

log
(

1 +
√

2 +
√

3
)

√
2

+
Li2
(
−7− 4

√
3
)

4
√

2
−
√

2Li2
(

2 +
√

3
)

.

So, it remains to prove the closed form for

1
8

Li2

(
−
(

2 +
√

3
)2
)
− Li2

(
2 +
√

3
)

suggested by the purportedly vanishing expression indicated above. Using Landen’s
identity, this is equivalent to

− 1
16

log2
(

1 +
(

2 +
√

3
)2
)
− 1

8
Li2

(
2 +
√

3
4

)
− Li2

(
2 +
√

3
)

.

The two-term linear combination

(11)
1
8

Li2

(
2 +
√

3
4

)
+ Li2

(
2 +
√

3
)
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of dilogarithmic values is a CMZV of level 12 and weight 2 [6]. CMZVs of this form
are completely tabulated via the Mathematica package concerning multiple zeta values
due to Au [5, 6]. After loading the required package [5, 6], inputting

MZPolyLog[{0, 1}, (2 + Sqrt[3])/4]

provides the desired evaluation, which holds according to the algorithms correspond-
ing to the package MultipleZetaValues [5, 6]. �

4. Discussion

Our derivation of the two-term dilogarithm relation for (11) is quite experimental, as
there are many “black boxes” involved in this derivation and the underlying algorithms
[6], in something of an analogous way compared to the famous Wilf–Zeilberger method
[9]. We provide, as below, a more complete explanation as to how the closed form (11)
may be obtained via the algorithms we had applied.

The required package contains a basis B for a Q-vector space of level 12, weight
2 CMZVs. We denote this Q-space as V [6]. The basis B may be accessed via the
following command [6].

MZBasis[12,2]

After inputting

MZPolyLog[{0, 1}, (2 + Sqrt[3])/4]

Au’s package determines that the above expression lies in V, and an algorithm is ap-
plied to determine how this expression may be written in terms of the members of
B, noting that Li2(2−

√
3) is in B, and that we may rewrite the desired two-term Li2

identity in an equivalent way so that the following holds [6]:

Li2

(√
3 + 2
4

)
− 8Li2(2−

√
3) = −π2

4
− 2 log2(2) +

5
2

log2(
√

3 + 2)

− 2 log(
√

3 + 2) log(2).

The foregoing considerations inspire a full exploration as to how our proof in the
preceding Section may be generalized, by reducing the series in Sun’s conjectures to
finite combinations of polylogarithms of “reasonable” weight, and then invoking Au’s
algorithms. On the other hand, our two-term dilogarithm relations as above are of
interest in their own right, in view of recent results as in [7].

Acknowledgements. The author wants to thank Kam Cheong Au for a useful discus-
sion. This article is largely based on an amalgamation of two preprints the author has
uploaded onto the HAL archive.
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