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Abstract. Tensors, or multi-linear forms, are important objects in a variety of areas
from analytics, to combinatorics, to computational complexity theory. Notions of tensor
rank aim to quantify the “complexity” of these forms, and are thus also important. While
there is one single definition of rank that completely captures the complexity of matrices
(and thus linear transformations), there is no definitive analog for tensors. Rather, many
notions of tensor rank have been defined over the years, each with their own set of uses.
In this paper we survey the popular notions of tensor rank. We give a brief history of
their introduction, motivating their existence, and discuss some of their applications in
computer science. We also give proof sketches of recent results by Lovett, and Cohen and
Moshkovitz, which prove asymptotic equivalence between three key notions of tensor
rank over finite fields with at least three elements.

1. Introduction

We first come across the notion of rank in a course on linear algebra. If A is an
m× n matrix over a field F, the rank of A is the dimension of the space spanned by its
rows (or columns). To help generalize this definition, it will be useful to reinterpret the
matrix A as a bilinear form T : Fm×Fn → F by the natural correspondence

(x, y) ∈ Fm×Fn 7→ T(x, y) = ∑
i,j

Ai,jxiyj.

As a notational convention, here and elsewhere in this paper we will use superscripts
to index coordinates of a vector, and subscripts to index over different vectors. For
example, if x1, x2, . . . are vectors, x7

5 would be the seventh coordinate of the fifth vec-
tor. Getting back to ranks, using this correspondence, we can formulate an alternative
definition of rank where the rank of T is the minimal natural number r such that T
can be written as a sum of r bilinear forms of “lowest” complexity, or rank 1 matrices.
The natural objects of lowest complexity are the linear 1-forms, i.e., the dot product
with a fixed vector. Products of 1-forms T1(x)T2(y) are then bilinear forms. Since every
bilinear form can be written as a finite sum of forms of this type, we set them to be our
rank 1 bilinear forms (matrices). Putting everything together, our alternative definition
then says that the rank of a matrix A is the minimum natural number r such that the
bilinear form T corresponding to A can be written as the sum of r bilinear forms each
of the type T1(x)T2(y) where T1 and T2 are 1-forms. This alternative definition agrees
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with the usual linear algebra definition of rank (see for instance [Hal58, Sections 32 and
51]).

In this paper we focus on generalizing the notion of rank to higher-dimensional
analogs of matrices. What are these higher-dimensional matrices? The analogs in
higher dimensions that we will look at are the d-tensors.

Definition 1.1 (d-tensor). Let F be a field. A d-tensor T on Fn1 × · · · ×Fnd is a multilin-
ear map T : Fn1 × · · · ×Fnd → F.

Note that a d-tensor T : Fn1 × · · · × Fnd → F can naturally be identified with a
d-dimensional array M such that

T(x1, . . . xd) = ∑
i1∈[n1],...,id∈[nd]

Mi1,...,id xi1
1 · · · x

id
d .

So, following the convention for matrices, we will often denote the space of d-tensors
on Fn1 × · · · ×Fnd by Fn1×···×nd .1

The definition of rank given above generalizes well to arbitrary d-tensors. Setting the
rank 1 d-tensors to products of d linear 1-forms (or, since linear 1-forms are the same as
1-tensors, d 1-tensors) leads to the notion of rank that is traditionally associated with
tensors. We call it traditional rank, or TR for short.

Definition 1.2 (Traditional Rank). A d-tensor T has traditional rank 1 if we can write

T(x1, . . . , xd) = T1(x1)T2(x2) · · · Td(xd),

where each Tj is a 1-tensor.
The traditional rank of an arbitrary d-tensor T, TR(T), is the minimum number r such

that we can write

T(x) =
r

∑
i=1

Ti(x)

where each Ti is a d-tensor with traditional rank 1.

While this definition does generalize matrix rank it turns out that there are also other,
non-equivalent generalizations of matrix rank to arbitrary tensors that characterize the
combinatorial, analytic, and geometric properties of tensors. Each of these notions is
useful in its own way. Finding tight relationships between these notions remains an
open research question.

One disadvantage of the traditional notion of tensor rank is that it is prohibitively
hard to compute in general. Since Håstad’s work in 1989 [Hås89] it has been known
that computing traditional tensor rank over finite fields is NP-complete, and over Q is
NP-hard. In 2013, Hillar and Lim [HL13] showed that Håstad’s proof could be modified
to show that traditional rank is NP-hard over R and C as well. Traditional rank also
turns out to be NP-hard to approximate with arbitrarily small error bounds [Swe18].
The non-traditional notions we will discuss are less “stringent” than traditional rank, so

1Here and elsewhere in the paper we will use [n] to denote the set {1, 2, . . . , n}.
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it is possible that they are easier to compute. Showing (exact or approximate) hardness
results for those notions, however, is still an open problem.

In this paper we introduce the landscape of notions of tensor rank, motivating their
existence (Section 2). We then give examples of applications of these notions in com-
putational complexity theory (Section 3). In Section 4 we give a rundown of the trivial
relationships between the notions that come from their definitions. Sections 5 and 6
give proof sketches for results by Lovett [Lov19] and Cohen and Moshkovitz [CM21]
respectively which, put together, prove asymptotic equivalence between three key no-
tions of rank over finite fields with three or more elements.

2. Tensor Rank Through the Ages

The oldest non-traditional notion of tensor rank is the so-called analytic rank.

Definition 2.1 (Analytic Rank). Let F be a finite field. The bias of a d-tensor T ∈
Fn1×···×nd is given by

bias(T) = E(x1,...,xd)∈Fn1 ×···×Fnd χ(T(x1, . . . , xd)),

where χ is a nontrivial additive character which, in the case that F = Fp, can be taken
to be χ(x) = e2πix/p.

The analytic rank of T, denoted by AR(T), is then given by

AR(T) = − log|F| bias(T).

This measure of the complexity of a tensor was first introduced by Gowers and
Wolf in the context of higher-order Fourier analysis [GW11]. In Section 5 we will see
the connection between the analytic rank and the other combinatorial and geometric
notions described below.

Going back to the traditional definition of tensor rank, there is no reason why one
cannot use other kinds of tensors as rank 1 tensors, as long as the new notion agrees
with the old in the case of matrices (in order to be a true generalization). Doing so, it
turns out, is useful for a whole host of applications. The first such “alternative” notion
was introduced in 2016 in the context of the so-called “capset problem.”

A capset in F3 is a subset of F3 with no non-trivial three-term arithmetic progressions.
That is, a capset is a set A ⊆ F3 that does not contain {x, x + r, x + 2r} for any x, r ∈ F3
with r 6= 0. The capset problem asks what the maximum size of a capset in F3 can be.
In the spring of 2016, Croot, Lev, and Pach [CLP17] proved a breakthrough result for a
similar problem in the additive group Z/4Z. They showed that if A ⊆ (Z/4Z)n con-
tains no non-trivial three-term arithmetic progressions, then |A| ≤ 3.60172n. Soon after,
Ellenberg and Gijswijt [EG17] generalized the Croot-Lev-Pach argument to show that
any progression-free set A ⊆ (Z/pZ)n, where p is a prime, satisfies |A| ≤ (J(p)p)n

where J(p) is an explicit constant less than 1. This exponentially improved the known
bound for the capset problem, bringing it down from O(3n/n1+c) (where c is some
absolute constant) to O(2.756n). Tao [Tao16] reformulated the Ellenberg-Gijswijt argu-
ment in terms of tensors, introducing what is now known as the slice rank of a tensor.

Online Journal of Analytic Combinatorics, Issue 18 (2023), #05
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Definition 2.2 (Slice Rank). A d-tensor T has slice rank 1 if we can write

T(x1, . . . , xd) = T1(xi)T2(xj : j 6= i),

where i ∈ [d], T1 is a 1-tensor, and T2 is a (d− 1)-tensor.
The slice rank of an arbitrary d-tensor T, SR(T), is the minimum number r such that

we can write

T(x) =
r

∑
i=1

Ti(x)

where each Ti is a d-tensor with slice rank 1.

Notice that in essence this definition just modifies Definition 1.2 so that our rank
1 tensors go from being products of d 1-tensors to being the product of two tensors:
one of order 1 and one of order d− 1. Also notice that in the case of matrices (which
are 2-tensors), Definitions 2.2 and 1.2 are exactly the same and agree with the usual
definition of matrix rank.

Slice rank, as we defined above, defines its rank 1 tensors by “slicing” off one coordi-
nate and multiplying a 1-tensor applied to that coordinate with a (d− 1)-tensor applied
to the remaining coordinates. A natural extension to this is to, instead of slicing off one
coordinate, allow arbitrary partitions of the coordinates into two parts. This was done
in 2017 (preprint; published in 2020) by Naslund [Nas20], who called this new notion
of rank partition rank. We formally define partition rank as follows.

Definition 2.3 (Partition Rank). A d-tensor T has partition rank 1 if we can write

T(x1, . . . , xd) = T1(xi : i ∈ S)T2(xj : j /∈ S),

where S ⊂ [d] with 1 ≤ |S| < d, T1 is a |S|-tensor, and T2 is a (d− |S|)-tensor.
The partition rank of an arbitrary d-tensor T, PR(T), is the minimum number r such

that we can write

T(x) =
r

∑
i=1

Ti(x)

where each Ti is a d-tensor with partition rank 1.

Using this new notion of rank, Naslund showed that any set A ⊆ Fn
q with size at

least ( n+(k−1)q
(k−1)(q−1)) must have distinct vectors x1, x2, . . . , xk+1 such that the vectors x1 −

xk+1, x2 − xk+1, . . . , xk − xk+1 are mutually orthogonal (he called a collection of such
x1, . . . , xk+1 a k-right corner).

Our last, most recent notion of rank is motivated by an age-old, fundamental ques-
tion in computer science: asymptotically how many scalar additions and multiplica-
tions are necessary to multiply two n× n matrices? Tensors are naturally connected to
this problem because the operation of matrix multiplication itself can be thought of as
a tensor.
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Recall that matrices M (2-tensors) can simultaneously be thought of as bilinear forms
T : Fm×Fn → F that map (x, y) 7→ xT My and linear maps T′ : Fm → Fn that map
x 7→ Mx. Similarly, we can also think of d-tensors

T(x1, . . . xd) = ∑
i1∈[n1],...,id∈[nd]

Ti1,...,id xi1
1 · · · x

id
d

as (d− 1)-linear maps T′ : Fn1 × · · · ×Fnd−1 → Fnd given by

[T′(x1, . . . , xd−1)]k = ∑
i1∈[n1],...,id−1∈[nd−1]

Ti1,...,id−1,kxi1
1 · · · x

id−1
d−1.

By the usual formula for matrix multiplication, if M and N are n× n matrices over
F, then MN is an n× n matrix with

(MN)ij =
n

∑
`=1

Mi`N`j.

Identifying the space of n× n matrices with Fn2
, the operation of matrix multiplication

takes two elements of Fn2
to another element of Fn2

where each entry is a bilinear form
applied to M and N. Thus matrix multiplication is a 3-tensor over the space of n× n
matrices. As we discuss in Section 3 the rank of this tensor is intimately related to the
computational complexity of matrix multiplication.

Motivated by this application (as well as a few others), Kopparty, Moshkovitz, and
Zuiddam [KMZ20] recently introduced the notion of geometric rank. Unlike the other
types of ranks discussed, this notion of rank does not aim to capture the combinatorial
or analytic properties of the tensor. Rather, it looks at the geometric properties of the
tensor, defining rank as the codimension of an algebraic variety. Kopparty, Moshkovitz,
and Zuiddam used this new notion of rank to prove tight bounds about the subrank
of the matrix multiplication tensor (the subrank is a quantity related to the rank that is
useful in the computational complexity analysis for matrix multiplication).

The geometric rank of a tensor is formally defined as follows.

Definition 2.4 (Geometric Rank). Let T ∈ Fn1×···×nd be a d-tensor with d ≥ 2. The
geometric rank of T is

GR(T) = codim{(x1, . . . , xd−1) ∈ Fn1 × · · · ×Fnd−1

: ∀z ∈ Fnd , T(x1, . . . , xd−1, z) = 0}.
Here we use the usual definition of the codimension of an algebraic variety. If V ⊆ Fn

is an algebraic variety (that is possibly reducible), the dimension of V, dim(V), is de-
fined to be the length of a maximal chain of irreducible subvarieties of V. The codi-
mension, codim(V), is then defined to be n− dim(V). For more detailed explanations
of these concepts we recommend looking at [Har13].

Geometric rank—as Kopparty, Moshkovitz, and Zuiddam mention without proof—
coincides with the linear algebra definition of matrix rank when d = 2. We give a quick
proof of that here.

Online Journal of Analytic Combinatorics, Issue 18 (2023), #05
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Proposition 2.5. Let M ∈ Fm×n be a matrix (a 2-tensor), and let r be the rank of M as per the
linear algebra definition. Then r = GR(M).

Proof. By definition of geometric rank,

GR(M) = codim{x ∈ Fm : ∀y ∈ Fn xT My = 0}
= codim{x ∈ Fm : xT M = 0T}
= m− dim{x ∈ Fm : xT M = 0T},

where 0 is the zero vector in Fm. Notice that dim{x ∈ Fm : xT M ≡ 0T} is just the
nullity of M, and so by the rank nullity theorem we are done. �

There is a slight caveat to Definition 2.4, which is that it implicitly assumes F to be
algebraically closed. This, however, is not a problem because in a general field we can
extend this definition via the embedding of the field into its algebraic closure.

3. Applications in Computer Science

Uttering the words “tensor rank” to a computer scientist will, with high probability,
elicit a response that contains the phrase “matrix multiplication.” And for good reason;
notions of tensor rank happen to be intimately related to the complexity and efficient
computation of matrix multiplication.

Multiplying two matrices is a fundamental computation with applications in nearly
every field computers are used in. It is thus not surprising that the following question
is of great interest.

Question 3.1 (Arithmetic Complexity of Matrix Multiplication). Given two n× n matrices
A and B over a field F, what is the minimum number of addition and scalar multiplication
operations needed to compute the n× n product matrix AB where

(1) (AB)ij =
n

∑
`=1

Ai`B`j?

Can one find an algorithm that actually computes the product with that number of operations?

The number of operations in Question 3.1 is known as the arithmetic complexity of
n× n matrix multiplication. Let us call this number A(n). An exact determination of
A(n) seems to be outside the range of methods available at the present time, so much
of the work around this has been focused on getting asymptotic bounds on arithmetic
complexity. It is then useful to define the following quantity.

Definition 3.2 (Exponent of Matrix Multiplication). The exponent of matrix multiplication,
ω, is defined as

ω = inf{τ ∈ R : A(n) = O(nτ)}.
Equivalently,

ω = inf{τ : ∃ an algorithm to compute n× n MM with O(nτ) operations}.
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It is easy to see that ω ∈ [2, 3]. The upper bound comes from the fact that the naïve
algorithm of computing each entry of the product using Equation 1 is O(n3). The lower
bound holds because any algorithm for matrix multiplication would have to make at
least n2 computations since the output is an n× n matrix. A long-standing conjecture
in algebraic complexity theory is that ω is in fact equal to 2.

As mentioned in Section 2, the operation of matrix multiplication is itself a 3-tensor.
It is convention to denote the tensor to multiply a k× m matrix and an m× n matrix
with 〈k, m, n〉. Since we are only focusing on square matrices, we will focus on the
tensors 〈n, n, n〉, which we will often shorten to 〈n〉. Seeing as rank is supposed to
encode the complexity of a tensor, it is not surprising that it is closely connected to
A(n). The following result is known to hold.

Theorem 3.3. Over any field, we have

ω = inf{τ ∈ R : TR(〈n〉) = O(nτ)}.

Proof. See [BCS97, Proposition 15.1] �

An important application of Theorem 3.3 is in showing that the exponent of ma-
trix multiplication does not change under another important, related measure of com-
plexity called the multiplicative complexity of matrix multiplication. The multiplicative
complexity of matrix multiplication is defined as the minimum number of scalar multi-
plication operations required for n× n matrix multiplication (the algorithm is of course
also allowed additions). Let us call this quantityM(n). It has been shown thatM re-
lates to traditional tensor rank in the following way (see, for instance, [BCS97, Section
14.1]).

1
2

TR(〈n〉) ≤M(n) ≤ TR(〈n〉).

From this inequality it follows that TR(〈n〉) = O(nτ) implies M(n) = O(nτ) and
M(n) = O(nτ) implies TR(〈n〉) = O(nτ). Combining this with Theorem 3.3 gives us
ω = inf{τ ∈ R :M(n) = O(nτ)}.

The connection in Theorem 3.3 also implies that upper and lower bounds on TR
directly translate to upper and lower bounds on the exponent of matrix multiplication.
The following result makes this explicit.

Theorem 3.4 ([Blä13]). If TR(〈k, m, n〉) ≤ r, then ω ≤ logkmn r.

In his seminal work, Strassen [Str69] showed that square matrices of size 2 can be
multiplied with seven multiplication operations (as opposed to eight using the naïve
method) at the cost of a few more addition operations. It follows from his work that
TR(〈2〉) ≤ 7. Plugging this into Theorem 3.4 tells us that ω ≤ 3 log8 7 = log2 7 =
2.801... ≤ 2.81. Hopcroft and Kerr [HK71] and Winograd [Win71] later (independently)
showed that 2 × 2 multiplication is not possible with just six multiplications, which
implies that TR(〈2〉) is in fact equal to 7. Thus log2 7 is the sharpest bound one can
get from Theorem 3.4 using 〈2〉. It turns out that TR(〈70〉) ≤ 143.640 [Pan80], which

Online Journal of Analytic Combinatorics, Issue 18 (2023), #05
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gives a slightly better bound of 2.80. Whether other tensors can lead to sharper bounds
remains an open question.

Strassen [Str86], using more traditional-rank-related techniques, was able to prove
that ω < 2.48. Coppersmith and Winograd [CW87], using a construction of arithmetic-
progression-free sets, showed that ω ≤ 2.375.... Starting in 2010, by analyzing higher-
order variants of the Coppersmith-Winograd construction, Stothers [Sto10], then Vas-
silevska Willians [Wil12], and then Le Gall [LG14] made incremental improvements.
This led to the current best upper bound of ω < 2.372....

The connections between matrix multiplication and tensor rank do not end here. As
mentioned in the previous paragraph, Coppersmith and Winograd’s proof involved a
construction of arithmetic-progression-free sets. This suggests that the complexity of
matrix multiplication might be related to the capset problem and Tao’s slice rank. And
indeed, that did turn out to be the case. In 2003, Cohn and Umans [CU03] described a
framework for proving upper bounds on ω that involves reducing matrix multiplication
to group algebra multiplication. In 2012, Alon, Shpilka, and Umans [ASU12] proved
relations between various then-open conjectures in combinatorics and bounds on ω.
The resolution of the capset problem in 2016 settled some of the conjectures involved
in the 2012 work. That led to the 2017 work of Blasiak et al. [BC+17], which used the
resolution of the capset problem to rule out obtaining an ω = 2 using a subclass of
Cohn-Umans-style constructions. In doing so, they extended the capset result, making
extensive use of the notion of slice ranks.

Finally, the introduction of the geometric rank was in part motivated by the com-
plexity of matrix multiplication. Kopparty, Moshkovitz, and Zuiddam [KMZ20] used
the notion of geometric rank to prove a tight upper bound on the so-called border sub-
rank of the matrix multiplication tensor, which matched a known lower bound. While
the exact definitions of subrank are beyond the scope of this survey, we recommend
reading [KMZ20] for further details.

4. Some Trivial Relationships

Before getting to the deeper connections between the different notions of rank, we
state some consequences obvious from the definitions. Any rank 1 form used in Defi-
nition 2.2,

T1(x1)T2(xj : j 6= i),

is in particular a rank 1 form of the form in Definition 2.3,

(2) T1(xi : i ∈ S)T2(xj : j /∈ S).

A tensor of the form in (2) is in turn of the form of the rank 1 form in Definition 1.2,

T1(x1) · · · Td(xd).

This implies the following result.
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Proposition 4.1. For any tensor T,

PR(T) ≤ SR(T) ≤ TR(T).

5. Relating Analytic Rank to the Others

We now discuss some deeper relationships which will show a cycle of relationships
between AR, SR, and TR. We start with an elegant result due to Lovett relating the
analytic and partition rank. For ease of notation we will look at tensors T : Vd → F

where V = Fn for some n. It will be easy to see that this proof can be generalized to
arbitrary T ∈ Fn1×···×nd .

Theorem 5.1 ([Lov19]). Let T : Vd → F be a d-tensor. Then AR(T) ≤ PR(T).

To prove this theorem we will need a lemma as well as another theorem about the
arithmetic rank. Both of these are due to Lovett.

Lemma 5.2 ([Lov19]). For each I ⊆ [d] let RI : V|I| → F be an |I|-tensor. Let

R(x) = ∑
I⊆[d]

RI(xj : j ∈ I).

Then |bias(R)| ≤ bias(R[d]).

Proof. First, let W0, . . . , Wn be arbitrary functions from Fm to F. Let A and B be func-
tions from Fn×Fm to F defined by

A(x, y) =
n

∑
i=1

xiWi(y), and

B(x, y) = A(x, y) + W0(y).

From the definition of bias we get

bias(B) = Ex,y χ(B(x, y))

= Ex,y χ(A(x, y) + W0(y))

= Ex,y[χ(A(x, y)) · χ(W0(y))]

= Ey[χ(W0(y)) ·Ex χ(
n

∑
i=1

xiWi(y))]

= Ey[1W1(y)=···=Wn(y)=0χ(W0(y))],

where the last equality holds because the expectation over x is 0 whenever any of the Wj
with 1 ≤ j ≤ n are non-zero. Taking absolute values and using the triangle inequality
gives us

(3) |bias(B)| ≤ Ey[1W1(y)=···=Wn(y)=0] = bias(A).

Online Journal of Analytic Combinatorics, Issue 18 (2023), #05
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With this smaller result, we prove the lemma by applying it repeatedly. Fixing i ∈ [d],
we can break up the summation in the definition of R as follows.

R(x) = ∑
I⊆[d];i∈I

RI(xj : j ∈ I) + ∑
I⊆[d];i/∈I

RI(xj : j ∈ I).

Notice that each RI(xj : j ∈ I) where i ∈ I is a tensor depending on xi, and thus can be

written as xj
iWj(xk : k 6= i). Thus the first sum is of the form ∑j xj

iWj(y), which matches
the form of A above. The second sum does not depend on xi, and so is of the form of
B. Thus, applying Equation 3 gives us

|bias(R)| ≤ bias

 ∑
I⊆[d];i∈I

RI(xj : j ∈ I)

 .

We use this inequality iteratively. First, applying it for i = d we have

|bias(R)| ≤ bias

 ∑
I⊆[d];d∈I

RI(xj : j ∈ I)

 .

Using ∑I⊆[d];d∈I RI(xj : xj ∈ I) instead of the tensor R in our inequality with i = d− 1
gives us∣∣∣∣∣∣bias

 ∑
I⊆[d];d∈I

RI(xj : j ∈ I)

∣∣∣∣∣∣ ≤ bias

 ∑
I⊆[d−1];d−1∈I;d∈I

RI(xk : k ∈ I)

 .

Continuing this process and applying the inequality for d− 2, . . . , 1, and then chaining
the inequalities gives us

|bias(R)| ≤ bias(R[d])

as desired. �

Using this lemma, Lovett proves that the analytic rank is sub-additive.

Theorem 5.3 ([Lov19]). Let T, S : Vd → F be d-tensors. Then

AR(T + S) ≤ AR(T) + AR(S).

Proof Sketch. For this proof, Lovett defines functions TI and SI such that for any x, y,
T(x, y) = ∑I⊆[d] TI(xI , y[d]−I) (similarly for S) where xI = (xi : i ∈ I) (similarly for y).
Using this decomposition and performing some algebra leads to

bias(T)bias(S) ≤

∣∣∣∣∣∣bias

(T + S)(x) + ∑
I([d]

SI(xI , b[d]−I)

∣∣∣∣∣∣ ,

where b is a fixed choice for y.
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Applying Lemma 5.2 to the functions R[d] = (T + S)(x) and RI = SI(xI , b[d]−I) shows
that the right hand side of the inequality is less than or equal to bias(R[d]), which in
our case equals bias(T + S). Putting everything together we get

bias(T + S) ≥ bias(T)bias(S),

and so by the definition of analytic rank,

AR(T + S) ≤ AR(T) + AR(S).

�

Using these two results, we can now prove Theorem 5.1.

Proof of Theorem 5.1. Given Theorem 5.3, it suffices to prove Theorem 5.1 for tensors of
partition rank 1. So suppose T : Vd → F has partition rank 1. Then we can find a
partition A t B = [d] with |A| , |B| ≥ 1 such that

T(x) = T1(xi : i ∈ A)T2(xj : j ∈ B).

For convenience, let us denote (xi : i ∈ A) by xA and (xj : j ∈ B) by xB.
Since the partition rank of T is 1, we need to show that AR(T) ≤ 1. To do so, it

suffices to show (by definition of analytic rank) that bias(T) ≥ |F|−1. For any a, b ∈ F

define the function

Fa,b(x) = (T1(xA) + a)(T2(xB) + b).

Expanding it out we can write

Fa,b(x) = T1(xA)T2(xB) + T1(xA)b + T2(xB)a + ab

= T(x) + T1(xA)b + T2(xB)a + ab.

Letting RA(x) = T1(xA)b, RB(x) = T2(xB)a, R∅ = ab, and R[d] = T, we can apply
Lemma 5.2 to get

|bias(Fa,b)| ≤ bias(T).

On the other hand, if a and b are chosen uniformly, we can take the expectation of the
bias over a and b to get

Ea,b bias(Fa,b) = Ea,b∈F;x∈Vd [χ((T1(xA) + a)(T2(xB) + b))]

= Ea,b∈F[χ(ab)]

= Prb∈F[b = 0]

= |F|−1 .

This proves our theorem. �

Combining Theorem 5.1 with Proposition 4.1 gives us the following corollary.

Corollary 5.4. Let T : Vd → F be a d-tensor. Then AR(T) ≤ SR(T).

Online Journal of Analytic Combinatorics, Issue 18 (2023), #05
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6. Closing the Loop for 3-tensors: Cohen and Moshkovitz’s Argument

Cohen and Moshkovitz [CM21] proved the following two theorems which, for 3-
tensors over finite fields with at least 3 elements, show asymptotic equivalence between
AR, GR, and SR when combined with Lovett’s result.

Theorem 6.1 ([CM21]). For any 3-tensor T over a perfect field F,

SR(T) ≤ 3GR(T)

Theorem 6.2 ([CM21]). For any 3-tensor T over any finite field F,

AR(T) ≥ (1− log|F| 2)GR(T).

Our goal will be to give an intuitive sketch of their argument. Techniques from
algebraic geometry will be essential, so we give some background.

6.3. Background from Algebraic Geometry. From now on, let K be a field. Recall that
a variety cut out by a (finite) number of polynomials over Kn is the subspace of Kn where
all the polynomials vanish. The ideal I(V) of a variety V is defined as follows.

Definition 6.4 (Ideal of a Variety). Let V ⊂ Kn be a variety. The ideal of V is

I(V) = { f ∈ K[x] : f (p) = 0 for each p ∈ V}.

Now we define the tangent space TpV to a variety V at p.

Definition 6.5 (Tangent Space). Let V ⊂ Kn be a variety. The tangent space TpV to a
variety V at p is

TpV =

{
v ∈ Kn :

∂g
∂v

(p) = 0, for each g ∈ I(V)

}
.

One can check that any variety can be written uniquely as the union of irreducible
varieties. An irreducible variety is one which cannot be written as the union of strictly
contained subvarieties. Then the dimension of a variety V can be defined as follows.

Definition 6.6 (Dimension of a Variety). The dimension of a variety V ⊂ Kn, written
dim V, is the maximal length of a chain of irreducible varieties such that

∅ 6= V1 ( V2 ( · · · ( Vk ( V.

The codimension of a variety V ⊂ Kn, codimV, is

codimV = n− dim V.

6.7. Proof Sketch of Theorem 6.1. For the full argument see [CM21]. We will give a
broader overview of the proof with the aim of conveying the intuition.

The proof of Theorem 6.1 hinges on the following previously proved rephrasing of
geometric rank.



NOTIONS OF TENSOR RANK 13

Lemma 6.8. For a 3-tensor over any field K,

GR(T) = min
r
{r + codim{x : rank T(x, ·, ·) = r}}.

Proof. See [KMZ20, Theorem 3.1]. �

Let r achieve the minimum in Lemma 6.8. Defining

Xr = {x ∈ F
n1 : rankT(x, ·, ·) ≤ r},

one can use Lemma 6.8 to show that GR(T) = r + codimXr. A 3-tensor T ∈ Fn1×n2×n3

with encoding array (Ti,j,k) can be reinterpreted as a linear space L ⊂ F
n1×n2 spanned

by {M1, . . . , Mn3}, where Mk = (Ti,j,k)i,j. One also has an association going the other
way. Given a matrix space L, choose a basis M1, . . . , Mk, and let T be the tensor with
encoding array (M1, . . . , Mk). Thus the notions of rank for tensors can be transferred
to matrix spaces.

Now let
Lr = L ∩Mr,

where Mr is the space of n1 × n2 matrices of rank at most r. Note that Mr, being
the space cut out by the (r + 1) × (r + 1) minors, is itself a variety. It turns out that
the variety Xr is isomorphic to Lr × F

n1−d. Thus codimXr = codimLLr.2 We have
reduced the problem to analyzing these “slices” of the matrix space L. Above, F is the
algebraic closure of F, which will be easier to work over in the arguments to follow.
We let SR(T) be as in Definition 2.2, except the coefficients are allowed to come from
F. Clearly SR(T) ≤ SR(T). One also has 2SR(T) ≤ 3SR(T) which is proved in [CM21].

We would be done if we had the following.

Lemma 6.9. Let L ⊂ Km×n be a matrix space over any algebraically closed field K. For any
r ∈N,

SR(L) ≤ 2r + codimLLr.

To see this, observe that

SR(T) = SR(L) ≤ 2r + codimLLr

= 2r + codimXr

= 2GR(T)− codimXr

≤ 2GR(T).

Applying 2SR(T) ≤ 3SR(T) gives SR(T) ≤ 3GR(T).

Proof sketch of Lemma 6.9. We proceed by induction. The base case is SR(L) ≤ dim L,
which is not difficult to show. Now consider the inductive step. Let V be an irreducible
component of Lr with dim V = dim Lr, and A ∈ V \Mr−1. If V \Mr−1 = ∅ then we
have V ⊆ Lr−1, and the result follows from induction. So we assume V \Mr−1 6= ∅.

2Here codimLX is the codimension of a variety X in a linear space L, i.e. codimLX = dim L− dim X.
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The trick now is to decompose the matrix space L into subspaces P = L ∩ TAMr and
P⊥. This particular decomposition is useful because one can run an explicit calculation
to find that

SR(TAMr) ≤ 2r.

We need the following simple properties of slice rank and tangent spaces to conclude
the result from that calculation.

Lemma 6.10.
(1) SR(L) ≤ dim L.
(2) SR(L′) ≤ SR(L) if L′ ⊂ L.
(3) SR(L + L′) ≤ SR(L) + SR(L′).
(4) Tp(V ∩W) ⊂ TpV ∩ TpW.
(5) If V is irreducible and p ∈ V then dim V ≤ dim TpV.

Using Lemma 6.10 and the main estimate SR(TAMr) ≤ 2r,

SR(P) = SR(L ∩ TAMr) ≤ SR(TAMr) ≤ 2r.

We also have

dim Lr ≤ dim TAV
≤ dim TALr

≤ dim(TAL ∩ TAMr)

≤ dim(L ∩ TAMr) = dim P.

Thus we have codimLP ≤ codimLLr. Using Lemma 6.10 we get

SR(P⊥) ≤ codimLP ≤ codimLLr.

Hence

SR(L) = SR(P + P⊥)

≤ SR(P) + SR(P⊥)
≤ 2r + codimLLr.

�

6.11. Proof Sketch of Theorem 6.2. The key ingredient of the proof is the following
generalization of the Schwarz-Zippel lemma. Define V(F) = V ∩ Fn for a variety
V ⊂ F

n defined over F.

Lemma 6.12. For any variety V ⊂ F
n defined over any finite field F cut out by polynomials

of degree at most d,

|V(F)|
|F |n ≤

(
d
|F |

)codimV
.
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We use Lemma 6.12 to prove Theorem 6.2. Consider T ∈ Fn1×n2×n3 , where we
interpret T as its defining array. Set V = ker(T) ⊂ F

N with N = n1 + n2, where here
we use the bilinear map formulation of T. By Lemma 6.12,

|V(F)|
|F |n ≤

(
d
|F |

)codimV
,

since T is bilinear. Thus

AR(T) = − log|F |
|V(F)|
|F |N

≥ codimV · (1− log|F | 2)(Using Lemma 6.12)

= GR(T)(1− log|F | 2).

The first equality above is true since

bias(T) = E(x1,x2)∈Fn1 ×F n2

[
Ex3∈Fn3 χ(T(x1, x2, x3))

]
= Pr

(x1,x2)∈Fn1 ×F n2

[T(x1, x2, ·) ≡ 0](4)

=
|V(F)|
|F |N .

Equation 4 holds because the bias of a linear form is 0 unless the linear form is identi-
cally 0, in which case its bias is 1. �
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