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Abstract. We consider a scalar-valued implicit function of many variables, and provide
two closed formulae for all of its partial derivatives. One formula is based on products
of partial derivatives of the defining function, the other one involves fewer products of
building blocks of multinomial type, and we study the combinatorics of the coefficients
showing up in both formulae.

Introduction

In the previous paper [Z], we considered the higher derivatives of an implicit func-
tion of one variable. As the binomial Leibniz rule completes the rule for first derivatives
of products, and Faà di Bruno’s formula extends the chain rule to higher orders, there is
a formula, initially proved in [C1] and then in [CF] (the latter corrected in [Wi]), which
plays the same role for the well-known formula from first-year calculus, expressing the
first derivative of an implicit function as minus the quotient of the partial derivatives
of the defining two-variable function. For more on the history of such questions, see
[J1] (and some of the references therein), while other references that are relevant to the
implicit function case are [Wo], [C2], [S], [N], and [J3]. Note that the formula from [Wi]
and [J3] contains many terms, and [Z] uses certain combinations of derivatives as the
building blocks for the formula, yielding another formula, which allows one to write
the nth derivative of an implicit function using significantly fewer terms. The special
case where the implicit function is an inverse function was considered, together with
parametric functions, in [J2].

The formula of Faà di Bruno involves ordinary partitions of the order n of the deriv-
ative. We recall that λ is a partition of n, a statement that we denote by λ ` n, meaning
that λ consists of a decreasing sequence of positive integers aq, 1 ≤ q ≤ p that sum
to n. A more useful description of a partition is by using, for every j, the multiplicity
mj of j in λ, counting how many times j shows up in the partition (i.e., how many of
the aq’s equal j). The formulae from [J2], [J3], [Wi], and [Z] (among others) are based
on partitions with two parameters, i.e., of certain integral vectors, with the coefficient
corresponding to any such partition being expressed again in terms of the multiplicities
describing the partition.
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One may ask similar questions for functions of several variables. A systematic con-
struction of the generalization of Faà di Bruno’s formula to the case where both func-
tions used in the composition have several variables is given in [CS]. Both this question
and the binomial Leibniz rule were considered combinatorially in [H] (see also some
of the references cited there, as well as the concise paper [M]), where it is also realized
that higher derivatives with respect to distinct variables give only coefficients of 1, and
the coefficients showing up in other derivatives come only from different terms from
the distinct variables case coinciding (this is called “collapsing partitions” in that refer-
ence). In this paper, we treat the question of an implicit function of several variables.

Note that formulae similar to that from [Z] were mentioned in [Y] in relation to
certain logarithmic residues of holomorphic functions of two complex variables. Such
formulae were also considered in the case m = r = 1 of [STZ], where a connection to
counting certain types of rooted trees was established. It seems likely that the formulae
from the current paper may bear similar relations to logarithmic residues of holomor-
phic functions of more complex variables, or to the case m = 1 and general r in [STZ].
They can also serve as another example of the principle of collapsing partitions from
[H] in a slightly more complicated setting.

Now, when y = y(x) is the function defined implicitly by f (x, y) = 0, there are two
variables that can become vector-valued: Either x, or y and f . The paper [Y] already
considered the case where both variables are vector-valued, yielding formulae for the
derivatives (i.e., the expansion) in terms of various types of integrals, but without any
combinatorial meaning. The paper [A] established some properties of the expansion it-
self when y and f are vectors, in terms of a recursive relation, showing how quickly the
details become complicated in general (these formulae are then used there for study-
ing the behavior of solutions of rate-distortion problems in some situations). The main
issue is the repeated multiplication by the inverse of the Jacobian of f with respect to
y, and the derivatives of its entries, which is why [Y] assumes in many formula that
this derivative is the identity matrix up to higher order terms.

So in this paper we keep f and y as scalar-valued functions, let x be a vector-valued
variable ~x = (x1, . . . , xN), and evaluate all the derivatives of y, of any order. The ar-
gument follows the one from [Z] very closely, and in particular our main formula,
Theorem 3.6, is given in terms of the larger building blocks, analogously to those from
that reference (though we also provide the formula in terms of products of the usual
derivatives in Theorem 4.2 later). Note that here also in the case of derivatives with
respect to distinct variables, the coefficients do not always equal 1, and when some
variables in the derivative coincide, we multiply the basic coefficients from the formula
for distinct variables by the number of collapsing partitions from [H]. Note that [H]
begins with the case of distinct variables, and then explains how counting collapsing
partitions yields the general case, but for our formulae the argument for distinct vari-
ables is not simpler to work with than the general one (especially in terms of notation),
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so we work with a general derivative to begin with. See Remark 4.5 at the end for the
precise details of this observation, for the formulae from both Theorems 3.6 and 4.2.

As usual when considering variables that can either coincide or be distinct, the ap-
propriate language to phrase and prove our formulae is in terms of multi-indices, or
equivalently multisets, which are based on the indices of our variables (between 1
and N for ~x = (x1, . . . , xN)). Each such multiset is determined by the multiplicities
with which it contains the indices 1 ≤ i ≤ N, and the operation of sums of multisets
(corresponding to union of disjoint sets) is expressed in terms of addition of these mul-
tiplicities. Indeed, the partitions that we get in our formulae are of vectors of length 2
with the first entry being a multiset (this is equivalent to partitioning vectors of length
N + 1, where the last coordinate plays a role that differs from that of all the others).
Several expressions that are based on these multisets (like factorials or binomial co-
efficients) are given in terms of products of the ordinary expressions, based on the
multipicities—we shall define each one of these as it shows up.

This paper is divided into 4 sections. Section 1 introduces the building blocks that are
used in our main formula. Section 2 determines which products of these combinations
show up in said formula, while Section 3 establishes the value of the combinatorial
coefficient with which every such expression shows up. Finally, Section 4 explains the
origin of these combinations, and proves the formula for the derivatives using only
ordinary products of derivatives.

1. The Basic Building Blocks

We begin by fixing some notation for the rest of the paper. As mentioned in the
Introduction, we will have N free variables xi, 1 ≤ i ≤ N, and we shall use ~x for
(x1, . . . , xN) for short. Given a function g of ~x, and perhaps of another variable y, we
shall write, as in [Z] and others, the partial derivative of g with respect to y as simply gy,
and we shall shorten the partial derivative with respect to the variable xi even further
to gi. For higher order derivatives of small order we shall simply put one index for
each variable with respect to which we differentiate.

In order to discuss higher order derivatives in a more natural way, we introduce,
following [Z], the following notation. The derivative ∂rg

∂yr for some r ≥ 0 will be written
as gyr . On the other hand, when I is a subset of the numbers between 1 and N, whose
cardinality we denote by |I|, the notation gI will stand for the derivative ∂|I|g

/
∏i∈I ∂xi.

More generally, we allow I to be a multiset, in which indices i between 1 and N may ap-
pear with multiplicities, and |I| is the sum of these multiplicities. Then we still write gI
for ∂|I|g

/
∏i∈I ∂xi, where in the product the number of times that we differentiate with

respect to the variable xi is its multiplicity in I. In more conventional notation, if νi is
the multiplicity with which i shows up in I, then |I| = ∑N

i=1 νi, and gI is ∂|I|g
/

∏N
i=1 ∂xνi

i .
For a general mixed derivative ∂|I|+rg

/
∏N

i=1 ∂xνi
i · ∂yr we shall use the notation gIyr . We
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shall view all sets as multisets (meaning that a set is a multiset in which the only mul-
tiplicities are 0 and 1), and in particular the empty set is the multiset in which all the
indices come with multiplicity 0.

So let f = f (~x, y) be a function of N + 1 variables, and assume that we are given
points (~x0, y0), with ~x0 standing for (x1,0, . . . , xN,0), such that f is continuously differ-
entiable at the point (~x0, y0) and satisfies f (~x0, y0) = 0 and fy(~x0, y0) 6= 0. Then the
equality f (~x, y) = 0 defines, by the Implicit Function Theorem, a function y = y(~x) at
a neighborhood of ~x0 (with y(~x0) = y0) that has the same differentiability properties of
f . All the derivatives that we shall henceforth take will be at either the point ~x0 or the
point (~x0, y0), and we shall not mention these explicit values in the notation.

Now, for the first derivative yi, we can keep the variables xj, j 6= i as fixed, and use the

result from any basic calculus course to deduce that yi = − fi
fy

. We are then assuming
that f is continuously differentiable of order at least n for some n ≥ 2, and we are
interested in an explicit expression, using combinatorial coefficients, for the derivative
yI for any multiset I with |I| = n (the latter equality means that the multiset I has size
n), in terms of the partial derivatives of f . We shall follow the arguments and examples
from [Z].

Let g be a function of ~x and y, and consider the function taking ~x to g
(
~x, y(~x)

)
. The

chain rule implies that its derivative with respect to a variable xj is gj + gyyj = gj−
gy fi

fy
.

We therefore obtain

(1)
∂

∂xj
fi =

fij fy − fyi f j

fy
and

∂

∂xj
fy =

f jy fy − fyy f j

fy
,

from which we can evaluate the second derivative yij := − ∂
∂xj

fi
fy

. One way is through

the derivative of a quotient, via Equation (1), and the other one is by taking g = fi
fy

and

considering −
( fi

fy

)
j +
( fi

fy

)
y

f j
fy

, yielding that yij equals

(2)
− fij fy + fyj fi

f 2
y

+
fiy fy − fyy fi

f 2
y

·
f j

fy
=
− fij f 2

y + fiy f j fy + f jy fi fy − fyy fi f j

f 3
y

.

In Equation (2) we already used the equality of the mixed derivatives when we replaced
fyj by f jy, and we shall always push the derivatives with respect to y to the end (since
f will always be assumed to have enough differentiability properties to justify such
operations), in view of the notation gIyr introduced above. Note that when i = j the
two sums with the + sign coincide, producing a factor of 2 as in Equation (2) of [Z].

As in [J2] and [Z], we will now prove that the denominator of the derivative yI , when
n = |I|, is f 2n−1

y , via the following lemma, in which we shall write I + j for the multiset
sum of I and {j} (this is a union if j /∈ I, and means increasing the multiplicity of j by
one while leaving the other multiplicities invariant in general), and note that yI+j is the
same as (yI)j (as well as (yj)I).
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Lemma 1.1. Let I be a multiset of size n, and take 1 ≤ j ≤ N. Then f 2n+1
y yI+j can be

evaluated as
f 2
y

∂
∂xj

(
f 2n−1
y yI

)
− (2n− 1)( f jy fy − fyy f j)

(
f 2n−1
y yI

)
.

Proof. We differentiate f 2n−1
y

(
~x, y(~x)

)
yI(~x) with respect to xj via the chain and product

rules, and use Equation (1) for evaluating fy · ∂
∂xj

fy (after we multiplied the previous

expression by f 2
y ). Moving the expression involving 2n− 1 to the other side yields the

desired equality. This proves the lemma. �

Let us see how Lemma 1.1 evaluates f 5
y yijk, using the fact that f 3

y yij equals − fij f 2
y +

fiy f j fy + f jy fi fy − fyy fi f j by Equation (2). We expand ∂
∂xk

fi, ∂
∂xk

f j, and ∂
∂xk

fy via Equa-
tion (1), and while in the case of ordinary derivatives from [Z], the resulting parts of
d

dx ( f 3
y y′′) all canceled, here, with ∂

∂xk
( f 3

y yij), only those with fiy fyy f j fk and f jy fyy fi fk do
in general (i.e., when i, j, and k are distinct). When we consider the remaining parts
and recall the second term from Lemma 1.1, we deduce that f 5

y yijk is the sum of three
expressions, one is

− fijk f 4
y + fijy fk f 3

y + fiky f j f 3
y + f jky fi f 3

y+

(3) − fiyy f j fk f 2
y − f jyy fiyy f j fk f 2

y − fkyy fiyy fi f j f 2
y + fyyy fi f j fk fy,

the other is

−2 fij fky f 3
y + fik f jy f 3

y + f jk fiy f 3
y + 2 fij fyy fk f 2

y − fik fyy f j f 2
y − f jk fyy fi f 2

y+

(4) − 2 fiy f jy fk f 2
y + fiy fky f j f 2

y + f jy fky fi f 2
y ,

and the third one is

(5) 3( fky fy − fyy fk)( fij f 2
y − fiy f j fy − f jy fi fy + fyy fi f j).

We see, however, that this presentation (which was based on taking the derivative
with respect to xk after the others) does not give an expression that is symmetric with
respect to interchanging k with i or with j. As we know that f 5

y yijk must have this sym-
metry property, we can write f 5

y yijk as the average of ∂
∂xk

( f 3
y yij)− 3( fky fy− fyy fk)( f 3

y yij),
∂

∂xj
( f 3

y yik)− 3( f jy fy− fyy f j)( f 3
y yik), and ∂

∂xi
( f 3

y yjk)− 3( fiy fy− fyy fi)( f 3
y yjk). Then the ex-

pression from Equation (3) remains, the ones from Equation (4) indeed cancel out, and
Equation (5) is replaced by three terms, without the factor 3. One can, in fact, expand
Equation (5) as in [N] and [J3] to give

3 fij fky f 3
y − 3 fij fyy fk f 2

y − 3 fiy fky f j f 2
y − 3 f jy fky fi f 2

y+

+3 fiy fyy f j fk fy + 3 f jy fyy fi fk fy + 3 fky fyy fi f j fy − 3 f 2
yy fx fi f j fk,

and verify that adding it to Equation (4) indeed gives the asserted average of Equation
(5), expanded in the same way.
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We recall from [Z] that our basic building blocks in the case of ordinary derivatives
were certain combinatorial sums. Based on our formula for f 3

y yij and on the first term in
the formula for f 5

y yijk, we define our building blocks in this setting as follows. As with
sets, we say that a multiset K is contained in another multiset J when the multiplicity κi
with which the index i appears in K is smaller than or equal to the multiplicity ηi with
which it shows up in J, for every 1 ≤ i ≤ N. When this is the case we write ( J

K) for the
product ∏N

i=1 (
ηi
κi
) (this is just 1 in case J, hence also K, is a set, thus with multiplicities

0 or 1, and vanishes when K is not contained in J).

Definition 1.2. Let g be a smooth enough function g of the variables ~x and y, and take a
multiset J of indices between 1 and N. For these parameters we define the expression ∆J g =

∑K⊆J(−1)|K|( J
K)g(J\K)y|K| ·∏i∈K fi · f |J|−|K|y . When J is {i}, {i, j}, {i, j, k}, {i, j, k, l} etc. we

will write ∆ig, ∆ijg, ∆ijkg, ∆ijklg, etc. respectively for the corresponding expression ∆J g (and
the same for multisets like {i, i}, {i, i, j}, and {i, i, i}, exhibiting multiplicities).

Note that the product ∏i∈K fi in Definition 1.2 means ∏N
i=1 f κi

i , with the multiplicities
from above, and that J \ K is the multiset difference, in which i shows up with the
multiplicity ηi − κi.

Definition 1.2 expresses the formula for f 3
y yij given in Equation (2) as just −∆ij f , and

the expression for f 5
y yijk obtained after the averaging from the last paragraph becomes

(6) − fy∆ijk f + ∆k fy · ∆ij f + ∆j fy · ∆ik f + ∆i fy · ∆jk f

from Equation (3) and the averaging of Equation (5) (the three symmetric summands
in Equation (6) correspond to the coefficient 3 in the expression − fy∆3 f + 3∆1 fy · ∆2 f
from [Z] for f 5

y times the third ordinary derivative, and this coefficient indeed shows up
when i = j = k). As in [Z] we shall follow the convention that the index precedes the ∆-
sign, namely ∆k fy from the last expression will always mean ∆k( fy) and never (∆k f )y,
and the same for every such expression that will appear below. Using Definition 1.2,
the formula for fy · ∂

∂xj
g
(
~x, y(~x)

)
is ∆jg and the numerators from Equation (1) are ∆j fi

and ∆j fy respectively, and we note again that these are not the derivatives of ∆j f itself,
since the latter vanishes by the definition of y = y(~x) implicitly via f

(
~x, y(~x)

)
= 0.

2. The Expressions Appearing in f 2n−1
y yI

Given an expression for f 2n−1
y yI , where I is a multiset of size n, in terms of the

construction blocks from Definition 1.2, we would like to get, for an index k, the formula
for f 2n+1

y yI+k using Lemma 1.1 (recall that I + k is our shorthand for the multiset sum
of I and {k}, which has size n + 1). As this lemma involves differentiation, we need
to differentiate the expressions from Definition 1.2. For this we recall again that the
derivative is of the expression ∆J g

(
~x, y(~x)

)
, where y(~x) is defined via f (~x, y) = 0 and

therefore yk = −
fk
fy

, and let ηj denote the multiplicity with which j appears in J.
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Lemma 2.1. f 2
y

∂
∂xk

∆J g equals fy∆J+kg + |J|∆k fy · ∆J g−∑N
j=1 ηj∆jk f · ∆J\jgy.

We have introduced the shorthand J \ j for the difference J \ {j}, which is obtained,
as the set difference, by subtracting 1 from the multiplicity of j in J. The fact that this
term involves the multiplier ηj implies that it only involves indices j that do appear in
J, so that we do not have to consider negative multiplicities in J \ j. We note again that
the last multiplier here is ∆J\j(gy), and not (∆J\jg)y.

Proof. We let f 2
y

∂
∂xk

operate on the term associated with the subset K ⊆ J in Definition
1.2, and apply Leibniz’ rule, to get 3 types of terms: One from acting on the derivative
of g, one from differentiating the power of fy, and one from the product ∏N

i=1 f κi
i , where

κi is the multiplicity to which i appears in K. The first term (associated with K) is

(7) (−1)|K|( J
K)
[
g[(J+k)\K]y|K| ·∏i f κi

i · f
|J|−|K|+2
y − g(J\K)y|K| ·∏i f κi

i · fk f |J|−|K|+1
y

]
,

and note that in the second summand we can write J \K = (J + k) \ (K+ k), the product
of the fi’s with fk corresponds to the product associated with K + k in Definition 1.2
and so does the extra sign, and |J| − |K|+ 1 equals |J| − |K + k|+ 2. Now, a multiset
L ⊆ J + k can either be presented as a multiset K ⊆ J (if the multiplicity to which it
contains k is not already ηk + 1) or as K + k for a multiset K ⊆ J (if k does show up
in this multiset), and then the first term in Definition 1.2 with K = L (if L ⊆ J) and
the second term there with K = L \ k (if k ∈ L) give the same expression, with the
multipliers ( J

L) and ( J
L\k) respectively. But if the multiplicity to which 1 ≤ i ≤ N shows

up in L is λi then the two terms are ∏i 6=k (
ηi
λi
) times (ηk

λk
) and ( ηk

λk−1) respectively. Thus

their sum is ∏i 6=k (
ηi
λi
) times (ηk+1

λk
) (also when λk is ηk + 1 or 0), namely (J+k

L ), and as
the power of fy is |J + k| − |L|+ 1, Definition 1.2 shows that this gives the first asserted
term.

The other terms from differentiating the summand with index K, having multiplici-
ties {κi}N

i=1 (with the derivative acting either on some fi or on the power of fy), combine

to give (−1)|K|( J
K)g(J\K)y|K| f

|J|−|K|
y times

(8) ∑N
j=1 κj( f jk f 2

y − f jy fk fy)∏N
i=1 f

κi−δi,j
i + (|J| − |K|)( fky fy − fyy fk)∏N

i=1 f κi
i ,

where δi,j in the exponent in the first term is the usual Kronecker δ-symbol (and we get
no negative exponents, since if κj = 0 then the multiplier κj annihilates the expression
with f−1

j ). Since the expression in parentheses in the second term of Equation (8) equals
∆k fy, taking the part that is multiplied by |J|, multiplying by the external coefficient,
and summing over K produces the second required term by Definition 1.2. In the part
that is multiplied by |K|, we replace this multiplier by ∑j∈K κj, and extract the factor f j

as well. This gives, for every j, the product κj ∏N
i=1 f

κi−δi,j
i times an expression which

reduces to ∆jk f . Now, the latter product corresponds to the multiplicities of K \ j, the
difference J \ K is the complement of that set in J \ j (with the same presentation of
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the difference of cardinalities in the exponent of fy), and κj(
J
K) equals ηj(

J\j
K\j) because

the binomial coefficients associated with i 6= j are the same on both sides and for j we
use the well-known identity κj(

ηj
κj
) = ηj(

ηj−1
κj−1). Since the multisets that are contained in

J \ j are precisely the multisets K \ j for a multiset K ⊆ J which contains j, and the sign
(−1)|K\j| is −(−1)|K|, summing over such K ⊆ J indeed yields the remaining desired
term via Definition 1.2. This completes the proof of the lemma. �

The case of empty J in Lemma 2.1 is just f 2
y times the identity ∂

∂xk
g = gk −

gy fk
fy

from
above, and the establishment of the last term in the proof of that lemma was based
on proving that ∆jk f can be obtained as fy∆k f j − f j∆k fy. This relation generalizes to
the identity stating that ∆J+jg = fy∆J gj − f j∆J gy for any multiset J and index j, which
one can prove using the fact that the subsets of J + j are K and K + j for K ⊆ J and
manipulations of binomial coefficients as in the proof of Lemma 2.1, but we omit the
details since we shall not use this formula. The non-vanishing of Equation (4) in our
evaluation of f 5

y yijk is equivalent to the fact that the term 2∆k fy · ∆ij f from Lemma 2.1
(with g = f and J of size 2) does not cancel with the terms −∆ik f · ∆j fy − ∆jk f · ∆i fy,
unlike the symmetric situation for ordinary derivatives, which gave a special case of
cancellation happening for no other parameters. The fact that for f 5

y yijk we obtain an
expression that is symmetric in the indices (as we should) follows from the precise
analysis of the coefficients.

We recall the value of f 5
y yijk from Equation (6), and wish to apply Lemmas 1.1 and 2.1

in order to evaluate f 7
y yijkl, where i, j, k and l are distinct indices (so that no binomial

coefficients are involved). We begin with the parts arising from − fy∆ijk f , where for the
action of f 2

y
∂

∂xl
we apply Leibniz’ rule, yielding − fy∆l fy · ∆ijk f from the differentiation

of fy, plus − fy times the expression

fy∆ijkl f + 3∆l fy · ∆ijk f − ∆il f · ∆jk fy − ∆jl f · ∆ik fy − ∆kl f · ∆ij fy

from Lemma 2.1, and the term +5∆l fy∆ijk f from the second summand in Lemma 1.1.
These combine to

− f 2
y ∆ijkl f + ∆l fy · ∆ijk f + fy∆il f · ∆jk fy + fy∆jl f · ∆ik fy + fy∆kl f · ∆ij fy.

Doing the same with the summand ∆k fy · ∆ij f from Equation (6) produces the sum of
the expressions [ fy∆kl fy + ∆l fy · ∆k fy − ∆kl f · fyy]∆ij f ,

∆k fy[ fy∆ijl f + 2∆l fy · ∆ij f − ∆il f · ∆j fy − ∆jl f · ∆i fy],

and −5∆l fy · ∆k fy · ∆ij f , so that the total coefficient of ∆l fy · ∆k fy · ∆ij f becomes −2.
Applying the same procedure with the other two terms from Equation (6) gives similar
expressions (with k interchanged with j or with i), where in particular each of the sum-
mands ∆k fy ·∆il f ·∆j fy and ∆k fy ·∆jl f ·∆i fy shows up again in one of these expressions.
Gathering all these terms, we obtain that f 7

y yijkl equals − f 2
y ∆ijkl f plus

(9) [ fy∆l fy · ∆ijk f ]s + [ fy∆ij fy · ∆kl f ]s − [ fyy∆ij f · ∆kl f ]s − 2[∆k fy · ∆l fy · ∆ij f ]s,
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where the superscript s means adding to it all the distinct elements required for getting
an expression that is symmetric under any permutation of the indices i, j, k, and l.
When some of the indices i, j, k, and l coincide, some of the terms inside each such
“s-orbit” coincide, so that we obtain fewer terms with higher multiplicities, and the
sum of the multiplicities is always 4, 6, 3, and 6 for the respective summands from
Equation (9) (this, times the coefficient 2 in the last summand, is in correspondence
with the coefficients in Equation (7) of [Z], which we obtain again when all the indices
coincide and we differentiate with respect to a single variable).

The explicit formula for yI , or equivalently f 2n−1
y yI when n = |I| ≥ 2, will be estab-

lished, as in [Z], in two steps. First we shall determine which expressions can show up
in it, and only later we will find the explicit coefficient with which every expression
does show up. The fact that the expression is symmetric under permuting the elements
of I will be a consequence of the second step only, since the coefficients in question will
have this symmetry property.

For the first step, we begin by considering the examples that we already have. When
n = 2 we saw that f 3

y yI = −∆I f , consisting of one multiplier, with index I, and no
external derivative with respect to y. The expression from Equation (6) shows that
for n = 3 we can write f 5

y yI as − fy∆I f + ∑i∈I ∆i fy · ∆I\i f (the sum over i is with
multiplicities when I is a multiset, and should be interpreted in general as ∑N

i=1 νi∆i fy ·
∆I\i f ), in which each summand is the product of two terms, one of which involves
f and the other fy, and the union of the indices is I. In case n = 4, the terms from
Equation (9) for a set I without multiplicities are − f 2

y ∆I f , ∑i∈I fy∆i fy · ∆I\i f (with
a plus sign), ∑J fy∆J fy · ∆I\J f for J ⊆ I of size 2, the sum over partitions of I into
unmarked sets J1 and J2 of size 2 of − fyy∆J1 f · ∆J2 f , and −2 ∑J fy∆I\J f ·∏i∈J ∆i fy, the
sum of which again taken over J ⊆ I of size 2 (the latter can be seen as partitions of
I into a set K of size 2 and two unmarked sets J1 and J2 of size 1, with the expression
being −2∆J1 fy∆J2 fy∆K f ). When I is a multiset of size 4, the same description is valid,
with sums involving the corresponding multiplicities, and we shall not write these
explicitly at this point. Each such product is of three expressions, the total number of
y-indices is 2, and the sets in the ∆-indices forming a partition of I, where in partitions
involving unmarked sets, the ∆-operators of the unmarked sets of same type act on the
same function (i.e., on f with the same amount of y-indices). The general form of a
term in the expression of order n is thus as follows.

Proposition 2.2. If |I| = n ≥ 2 then f 2n−1
y yI is a linear combination of expressions of the

sort ∏n−1
e=1 ∆Je fyre , satisfying the following conditions: In each such term the multisets Je sum

to I as multisets (some Je’s can be empty), we have ∑n−1
e=1 re = n− 2, and the expressions with

re = 0 cannot show up with Je empty or a singleton.

Proof. For n = 2 the single term ∆I f satisfies the required properties (and one can
check that so do the terms showing up in our explicit expressions when n is 3 or
4), and we assume, by induction, that it holds for a multiset I of cardinality n. We
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consider a multiset of cardinality n + 1 which is of the form I + k for some index k, and
then Lemma 1.1 expresses f 2n−1

y yI as the sum of two terms, the second of which is a
constant multiple of ∆k fy times the original expression f 2n−1

y yI . Since this multiplies
every product from f 2n−1

y yI by one expression, with the extra index k and with one
additional index y, we indeed obtain a linear combination of products of n terms, with
a total of n− 1 indices of y, and with ∆-indices whose multiset sum is I + k. For the
first term we let f 2

y
∂

∂xk
act via Leibniz’ rule on every product from f 2n−1

y yI , yielding
products of n− 2 elements times the derivative that we evaluated in Lemma 2.1. Each
such evaluation yields three terms, the second of which is the original expression times
∆k fy, with which we have already dealt. The first term from Lemma 2.1 adds the index
k to the corresponding multiset Je (thus to the multiset sum I), and with the extra
term fy, having the empty multiset in the ∆-index and one index y more, we again get
elements of the desired sort. Finally, for each 1 ≤ j ≤ N whose multiplicity in Je is
positive, the third term from Lemma 2.1 replaces ∆Je fyre by two terms (increasing the
number of multipliers by 1 yet again), one with j missing from Je but the additional
index y, and the other one, ∆jk f , with the remaining indices to complete to the multiset
sum I + k and no y-index. As none of the expressions f or ∆i f shows up in this process,
this proves the proposition. �

The proof of Proposition 2.2 yields, in its induction step, either a multiplier of fy
(having empty Je and re = 1), or a multiplier ∆k fy (with Je a singleton and re = 1),
or a multiplier ∆jk f (whose multiset Je has size 2 but re = 0). The fact that every
combination from that proposition must indeed contain one such multiplier essentially
follows from Proposition 5 of [Z] using cardinalities, but we reproduce the argument in
our setting. Note that in [Z] we considered coordinate-wise sums of vectors of the form[

l
r
]

with l and r in N. Here we have sets and numbers, but for keeping the notation we
shall write

[
J
r
]
+
[

K
s
]

for
[ J+K

r+s
]

where J and K are multisets of indices between 1 and
N, J + K is their multiset sum, and r and s are non-negative integers. The conditions
from Proposition 2.2 mean that each term corresponds to an unordered collection of
n− 1 “vectors”

[ Je
re

]
, with ∑n−1

e=1
[ Je

re

]
=
[ I

n−2
]
.

Proposition 2.3. Assume that we are given, for every 1 ≤ e ≤ n− 1, a pair
[ Je

re

]
, and that if

re = 0 then the multiset Je is neither empty nor a singleton. Assume further that the vectors[ Je
re

]
sum to

[ I
n−2

]
. Then either there exists e with Je empty and re = 1, or there is e with

|Je| = 1 and re = 1, or we have |Je| = 2 and re = 0 for some e.

Proof. The proof follows that of Proposition 5 of [Z]. Note that the assumption on
the sum yields ∑n−1

e=1 |Je|+ ∑n−1
e=1 re = |I|+ n− 2 = 2n− 2. Assume now that the first

case does not happen (otherwise we are done). Then we have |Je|+ re ≥ 2 for every
1 ≤ e ≤ n− 1 since the other two cases in which this inequality does not hold are not
allowed. Summing over e we obtain that ∑n−1

e=1 |Je|+ ∑n−1
e=1 re ≥ 2n− 2, but as we know

that the left hand side equals 2n− 2, we deduce that all the inequalities are equalities.
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The case where Je is empty and re = 2 for every e would yield a sum of
[

∅
2n−2

]
, and as

this is different from
[ I

n−2
]
, this situation cannot occur. Combining this with the sum

2 property yields that either |Je| = 1 and re = 1 for some e, or there is e with |Je| = 2
and re = 0, as desired. This proves the proposition. �

Proposition 2.3 does not yet assure us that any product satisfying the conditions from
Proposition 2.2 indeed shows up in the formula for f 2n−1

y yI (this will be a consequence
of the not-vanishing of the coefficients from Theorem 3.6 below). But we do see it in
the cases where we already have the complete formula. When n = 2 the only possible
product of a single element corresponds to

[
I
0
]
, and in case n = 3 we can decompose[

I
1

]
, up to the order of the summands, as either

[
I
0
]
+
[

0
1

]
, or

[ I\i
0

]
+
[

i
1

]
for i ∈ I

(where we write i in case the set Je is the singleton {i}). For n = 4 the unordered sums
producing

[
I
2
]

are
[

I
0
]
+
[

0
1

]
+
[

0
1

]
,
[ I\i

0

]
+
[

i
1

]
+
[

0
1

]
for each i ∈ I,

[ J
1

]
+
[ I\J

0

]
+
[

0
1

]
for a multiset J ⊆ I of cardinality 2, the combination

[ J1
0

]
+
[ J2

0

]
+
[

0
2
]

where J1 + J2

is an unordered partition of I into two multisets of cardinality 2, and
[ I\{i,j}

0

]
+
[

i
1

]
+[ j

1

]
for two indices i and j with i and j in I when they are distinct or with i = j of

multiplicity at least 2 in I (we write I \ {i, j} and not I \ ij to avoid the ambiguity with
(I \ i)j, which may look like (I \ i) + j). Comparing these decompositions with the
expressions for the derivatives given in Equations (2), (6), and (9) exemplifies that the
terms in the formula for f 2n−1

y yI are expected to be in one-to-one correspondence with
the products satisfying the conditions from Propositions 2.2 and 2.3.

Note that the expression that we seek is yI , and not the product f 2n−1
y yI , so that we

consider the following modification. As the vectors
[ Je

0

]
with |Je| ≤ 1 are excluded,

every vector
[ Je

re

]
with |Je|+ re < 2 is

[
∅
1

]
and corresponds to fy, which is expected to

show up in the denominator of the formula for yI rather than as one of the multipliers.
In order to be able to write the expressions for both f 2n−1

y yI and yI , we recall that
partitions can be given in terms of multiplicities, and make the following definition.

Definition 2.4. Let a set I be given, with multiplicities {νi}N
i=1, and assume that n = |I| =

∑N
i=1 νi ≥ 2. Then ÃI stands for the set of partitions of

[ I
n−2

]
having n− 1 (unordered) parts,

none of which is of the form
[

∅
0

]
or
[

i
0

]
for a singleton {i}. We shall write elements α̃ ∈ ÃI

using multiplicities mJ,r ≥ 0 for multisets J and integers r ≥ 0, with m0,0 = mi,0 = 0 for any
i ∈ I (where the index i stands for J = {i}), and such that the equalities ∑J,r mJ,r = n− 1 and
∑J,r rmJ,r = n− 2 of numbers hold, as well as the multiset sum equality ∑J,r mJ,r J = I. We
also define AI to be the set of multiplicities {mJ,r}{|J|+r≥2} for which we have ∑J,r mJ,r J = I as
multisets and ∑J,r(r− 1)mJ,r = −1.

As in Lemma 7 of [Z], we shall need the essential finiteness of elements of the sets
ÃI and AI from Definition 2.4, as well as a natural identification between these sets.
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Lemma 2.5. For any multiset I of size n ≥ 2, and every element of ÃI or of AI , we have
mJ,r = 0 for all but finitely many vectors

[
J
r
]
. Moreover, there is a canonical isomorphism

between ÃI and AI .

Proof. Note that for an element {mJ,r}J,r of either set, the multiset equality yields
∑J,r |J|mJ,r = n. Thus, if {mJ,r}{|J|+r≥2} is an element of AI then the inequality condition
on the indices and the fact that multiplicities are non-negative bounds ∑{|J|+r≥2}mJ,r
by ∑{|J|+r≥2}(|J|+ r− 1)mJ,r, which equals n− 1 by the latter equality and Definition
2.4. The fact that we also have ∑J,r mJ,r = n − 1 for elements of ÃI yields the first
assertion for elements of both sets. The isomorphism between the two sets is defined,
as in [Z], by taking the element α̃ = {mJ,r}J,r ∈ ÃI to α = {mJ,r}{|J|+r≥2}, which
means forgetting the multiplicity m∅,1 since m∅,0 and mi,0 for singletons {i} vanish by
definition. Subtracting the two general equalities defining elements of ÃI in Defini-
tion 2.4 shows that such elements satisfy ∑J,r(r − 1)mJ,r = −1, and since m∅,1 does
not contribute to any multiset sum as well as to the sum ∑J,r(r − 1)mJ,r, our map
indeed takes ÃI to AI . Moreover, given an element of AI , in any pre-image of our
element in ÃI , the multiplicity mJ,r is known when |J| + r ≥ 2 and we must have
n− 1 = ∑J,r mJ,r = ∑{|J|+r≥2}mJ,r + m∅,1, which determines m∅,1 and shows that the
map is injective. Moreover, as we saw that ∑{|J|+r≥2}mJ,r ≤ n− 1 for every element of
AI , the multiplicity m∅,1 that we must add for obtaining our pre-image is non-negative,
yielding the surjectivity of our map as well. The canonical map α̃ 7→ α that we con-
structed is thus a bijection. This proves the lemma. �

We can therefore obtain the initial form of the formula for yI .

Corollary 2.6. There exist coefficients {cα}α∈AI such that yI is a sum of the form

∑
α={mJ,r}{|J|+r≥2}∈AI

[
cα ∏
|J|+r≥2

(∆J fyr)mJ,r
/

f
n+∑|J|+r≥2 mJ,r
y

]
.

Proof. Using Definition 2.4, we deduce from Propositions 2.2 and 2.3 that yI can be pre-
sented as the sum ∑α̃={mJ,r}J,r∈ÃI

cα̃ ∏J,r(∆J fyr)mJ,r
/

f 2n−1
y . We replace, using Lemma

2.5, each α̃ ∈ ÃI by the corresponding α ∈ AI , denote cα̃ also by cα, and merge
(∆∅ fy1)m∅,1/ f 2n−1

y into f m∅,1−2n+1
y . Recalling the value of m∅,1 that we attached to any

α ∈ AI in the proof of that lemma, this produces the desired expression. This proves
the corollary. �

We remark again that the coefficient cα from Corollary 2.6 must remain the same
when α is replaced by its image under a permutation of the indices that leaves the mul-
tiset I invariant, since the formula for yI must be invariant under such permutations.
This does not follow from the proof of that corollary, and will be established only after
we determine the formula for these coefficients in Theorem 3.6 below.

Remark 2.7. For every α ∈ AI , the sum h = ∑|J|+r≥2 mJ,r is again the number of vectors in the
partition, but the partition now is of

[ I
h−1
]

(into h vectors). As with mJ,r = 0 for every J and
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r with |J|+ r ≥ 2 the equalities defining an element of AI in Definition 2.4 are not satisfied,
we deduce that h cannot vanish, and since 2h = ∑|J|+r≥2 2mJ,r ≤ ∑|J|+r≥2(|J| + r)mJ,r,
and we saw in the proof of Lemma 2.5 that the latter sum equals h + n − 1, we deduce that
1 ≤ h ≤ n− 1. It will thus be convenient to write AI =

⋃n−1
h=1 AI,h (a disjoint union), where

AI,h is obtained from AI by adding the additional constraint that ∑|J|+r≥2 mJ,r = h, which is
equivalent to ∑|J|+r≥2(r − 1)mJ,r = h − 1. Then in Corollary 2.6 the summands that arise
from AI,h involve the denominator f n+h

y . Returning to AI , we see that I only shows up in
the multiset equality, and we define A to be the set of all α = {mJ,r}{|J|+r≥2} that satisfy
the non-negativity assumption mJ,r ≥ 0 for every J and r, the finiteness of {(J, r)|mJ,r > 0}
from Lemma 2.5, and the equality ∑J,r(r − 1)mJ,r = −1 from Definition 2.4. It is clear that⋃
|I|≥2 AI is a disjoint union that is contained in A (since I is determined as ∑J,r mJ,r J, which

is a finite sum defining a finite multiset), and we claim that this union gives all of A. Indeed,
for an element of A we get that ∑|J|+r≥2 mJ,r|J| equals ∑|J|+r≥2(|J|+ r − 1)mJ,r + 1 (by the
defining equality from Definition 2.4), which is at least ∑|J|+r≥2 mJ,r + 1 by non-negativity and
the index restriction |J|+ r ≥ 2. But as the latter sum was seen to be h ≥ 1, we find that by
setting I to be the multiset sum ∑|J|+r≥2 mJ,r J we get |I| ≥ 2, and therefore every element of A
lies in a (unique) set AI with |I| ≥ 2.

3. The Combinatorial Coefficients

In order to be able to calculate the coefficients cα from Corollary 2.6, we shall con-
struct, as in [Z], a recursive relation for them. From the formulae that we have already
established, it follows that when |I| = 2 and α is the only element lying in A2, this
coefficient is −1, and when |I| = 3 we get again a coefficient of −1 for the element of
A3 with

[
I
0
]
, while for the three other elements there it equals +1 when the elements of

I are distinct (if I is a multiset with multiplicities 2 and 1, then these become two terms
with the coefficients +2 and +1, and when I is a single element having multiplicity
3, these elements of A3 all merge to a single one, with the coefficients +3). When I is
a set of size 4 (meaning a multiset all of whose elements are distinct), we can divide
Equation (9) by f 7

y and read the coefficients off the elements of A4 from there.
For establishing the recursive relation, consider a multiset I of size n, and in the

corresponding set ÃI from Corollary 2.6 we choose an element α̃, which determines the
multiplicities {mJ,r}J,r. Given some index k, we define the following objects. First, take
a vector

[
J̃
r̃

]
satisfying J̃ + r̃ ≥ 2 and m J̃,r̃ ≥ 1, and given J and r we set the multiplicity

mk, J̃,r̃
+,J,r to be mJ,r + 1 in case

[
J
r
]

is
[

∅
1

]
or
[

J̃+k
r̃

]
, to be mJ,r − 1 when

[
J
r
]
=
[

J̃
r̃

]
, and

simply mJ,r in any other case. We define α̃ J̃,r̃
k,+ to be the set of multiplicities {mk, J̃,r̃

+,J,r}J,r.

Assume now that
[

J̃
r̃

]
is with J̃ 6= ∅ and with m J̃,r̃ ≥ 1, and take j ∈ J̃, with multiplicity

η̃j ≥ 1 in J̃, such that if r = 0 then J̃ (which cannot be a singleton) is not {j, k} with

our index k. In this situation we define mk, J̃,r̃,j
t,J,r to be mJ,r + 1 if

[
J
r
]

equals either
[ jk

0

]
or[ J̃\j

r̃+1

]
, mJ,r − 1 in case

[
J
r
]
=
[

J̃
r̃

]
, and mJ,r otherwise. We then set α̃

J̃,r̃,j
k,t := {mk, J̃,r̃,j

t,J,r }J,r.
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Moreover, the multiplicity mk
m,J,r is defined to be mJ,r + 1 when

[
J
r
]
=
[

k
1

]
and mJ,r

whenever
[

J
r
]
6=
[

k
1

]
, and we denote {mk

m,J,r}J,r by α̃k,m. Using these definitions, we
obtain the following lemma.

Lemma 3.1. If α̃ is in ÃI , 1 ≤ k ≤ N, and J̃, r̃, and j are such that following the symbols are
defined, then α̃ J̃,r̃

k,+, α̃
J̃,r̃,j
k,t , and α̃k,m are all elements of ÃI+k. Consider now the corresponding

expression cα̃ ∏J,r(∆J fyr)mJ,r , and let f 2
y

∂
∂xk
− (2n− 1)∆k fy, with n := |I|, act on it. The result

gives the combination with the following coefficients: If J̃ and r̃ are such that | J̃|+ r̃ ≥ 2, then
the product corresponding to α̃ J̃,r̃

k,+ appears multiplied by m J̃,r̃cα̃; When j is in J̃ with multiplicity

η̃j and
[

J̃
r̃

]
6=
[ jk

0

]
, the product arising from α̃

J̃,r̃,j
k,t comes with the coefficient −η̃jm J̃,r̃cα̃; And

there is one additional term, which is the product associated with α̃k,m times the coefficient
−
(
n− 1−m∅,1 + ∑N

j=1(1 + δj,k)mjk,0
)
cα̃.

Proof. We evaluate the action of f 2
y

∂
∂xk

on cα̃ ∏J,r(∆J fyr)mJ,r via Leibniz’ rule, and the
action on the multiplier with J̃ and r̃ yields the coefficient m J̃,r̃ from the exponent and
replaces this multiplier by the expression from Lemma 2.1. The first term from that
lemma yields, wherever | J̃| + r̃ ≥ 2, the asserted term corresponding to α̃ J̃,r̃

k,+, as we
have the vector

[
J̃+k

r̃

]
and the multiplier fy instead of one instance of

[
J̃
r̃

]
. Considering

now the jth summand in the third term from that lemma, in the action on the multiplier
with J̃ 6= ∅, j ∈ J̃, and r̃ such that

[
J̃
r̃

]
6=
[ jk

0

]
, the vector

[
J̃
r̃

]
is replaced by

[ J̃\j
r̃+1

]
, and

we have the multiplier ∆jk f , increasing the multiplicity mjk,0 by 1.
It remains to consider the second term from Lemma 1.1, the contribution of the sec-

ond term from Lemma 2.1 for every J̃ and r̃, the first term from Lemma 2.1 from the
action on the power of fy associated with

[
J̃
r̃

]
=
[

∅
1

]
, and the third term arising from j

when the action is on the multiplier ∆jk f and
[

J̃
r̃

]
=
[ jk

0

]
. Every such expression pro-

duces the original expression times ∆k fy, and therefore give a multiple of the product
associated with α̃k,m. The coefficients with which this product appears in the terms thus
described are −(2n− 1)cα̃, the sum over J and r of |J|mJ,rcα̃ (which combine to +ncα̃

because α̃ ∈ ÃI , as Definition 2.4 implies), +m∅,1cα̃, and the sum over j of −mjk,0cα̃

times the multiplicity of j in the multiset {j, k}, which is 1+ δj,k. This gives the asserted
expression, which also establishes, together with Proposition 2.2, the statement that all
of these sets of multiplicities lie in ÃI+k (the latter is also easy to verify directly). This
proves the lemma. �

Lemma 3.1 evaluates the action of f 2
y

∂
∂xk
− (2n − 1)∆k fy on a single summand, as-

sociated with an element of ÃI . In order to find the total coefficient in front of the
summand corresponding to an element of ÃI+k when f 2

y
∂

∂xk
− (2n − 1)∆k fy acts on a

combination of many summands from ÃI , we need the dual notation to that used in
Lemma 3.1. Take thus an element β = {µJ,r}{|J|+r≥2} from AI+k (rather than ÃI+k).
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Consider first a vector
[

Ĵ
r̂

]
with k ∈ Ĵ, | Ĵ| + r̂ ≥ 3, and µ Ĵ,r̂ ≥ 1, and set µk, Ĵ,r̂

−,J,r to

be µJ,r − 1 in case
[

J
r
]
=
[

Ĵ
r̂

]
, µJ,r + 1 when

[
J
r
]
=
[

Ĵ\k
r̂

]
, and µJ,r otherwise. The

resulting element {µk, Ĵ,r̂
−,J,r}{|J|+r≥2} will be denoted by β Ĵ,r̂

k,−. Now take 1 ≤ j ≤ N

such that µjk,0 ≥ 1 and take
[

Ĵ
r̂

]
satisfying r̂ ≥ 1, | Ĵ| + r̂ ≥ 2,

[
Ĵ
r̂

]
6=
[

k
1

]
, and again

µ Ĵ,r̂ ≥ 1, and we define µ
k, Ĵ,r̂,j
b,J,r to be µJ,r − 1 when

[
J
r
]

equals either
[

Ĵ
r̂

]
or
[ jk

0

]
, µJ,r + 1

if
[

J
r
]
=
[ Ĵ+j

r̂−1

]
, and µJ,r in any other case. We then set β

Ĵ,r̂,j
k,b to be the element with

multiplicities {µk, Ĵ,r̂,j
b,J,r }{|J|+r≥2}. Finally, given β for which µk,1 ≥ 1, the multiplicity µk

d,J,r
is defined to be µJ,r − 1 when

[
J
r
]
=
[

k
1

]
and µJ,r in case

[
J
r
]
6=
[

k
1

]
, and the element

{µk
d,J,r}{|J|+r≥2} is denoted by βk,d. Recalling that adding or omitting the tilde corre-

sponds to the map from Lemma 2.5 (in the appropriate direction), we establish the
following duality between these constructions.

Lemma 3.2. Given a multiset I with |I| ≥ 2, an index 1 ≤ k ≤ N, and an element β ∈ AI+k,

if any of the expressions β Ĵ,r̂
k,−, β

Ĵ,r̂,j
k,b , or βk,d is defined, then it lies in AI . Take also an element

α̃ ∈ ÃI , and two vectors
[

J̃
r̃

]
and

[
Ĵ
r̂

]
. Under the assumption that

[
Ĵ
r̂

]
=
[

J̃+k
r̃

]
(which is

equivalent to k ∈ Ĵ and
[

J̃
r̃

]
=
[

Ĵ\k
r̂

]
), we have that α̃ J̃,r̃

k,+ is defined and equals β̃ precisely when

β Ĵ,r̂
k,− is defined and equals α. Now assume that j ∈ J̃ for some 1 ≤ j ≤ N and

[
Ĵ
r̂

]
=
[ J̃\j

r̃+1

]
(or equivalently r̂ ≥ 1 and

[
J̃
r̃

]
=
[ Ĵ+j

r̂−1

]
), and then α̃

J̃,r̃,j
k,t is defined and equals β̃ if and only if

β
Ĵ,r̂,j
k,b is defined and equals α. In addition, β̃ is of the form α̃k,m if and only if βk,d is defined and

equals α.

Proof. The verification that the two conditions from Definition 2.4 are satisfied for β Ĵ,r̂
k,−,

β
Ĵ,r̂,j
k,b , and βk,d wherever β ∈ AI+k is easy, establishing the first assertion. Now, from
| J̃|+ r̃ ≥ 2 the relation from the second assertion yields k ∈ Ĵ and | Ĵ|+ r̂ ≥ 3 with our[

Ĵ
r̂

]
, while if k ∈ Ĵ and | Ĵ| + r̂ ≥ 3 then | J̃| + r̃ ≥ 2 for the value of

[
J̃
r̃

]
. Moreover,

when
[

Ĵ
r̂

]
and

[
J̃
r̃

]
are related in this manner, we interpret the equalities β̃ = α̃ J̃,r̃

k,+ (i.e.,

µJ,r = mk, J̃,r̃
+,J,r for every J and r) and α = β Ĵ,r̂

k,− (namely mJ,r = µk, Ĵ,r̂
−,J,r wherever |J|+ r ≥ 2).

Both of them are equivalent to the equality µJ,r = mJ,r holding wherever
[

J
r
]

is with
|J|+ r ≥ 2 and different from both

[
Ĵ
r̂

]
and

[
J̃
r̃

]
, as well as to the equivalent equalities

µ Ĵ,r̂ = m Ĵ,r̂ + 1 ≥ 1 and m Ĵ,r̂ = µ Ĵ,r̂− 1 for
[

J
r
]
=
[

Ĵ
r̂

]
and µ J̃,r̃ = m J̃,r̃− 1, or equivalently

m J̃,r̃ = µ J̃,r̃ + 1 ≥ 1 (yielding the other admissibility conditions), in case
[

J
r
]
=
[

J̃
r̃

]
.

For the remaining desired equality µ∅,1 = m∅,1 + 1, we note that if there is
[

Ĵ
r̂

]
with

µ Ĵ,r̂ ≥ 1 and | Ĵ|+ r̂ ≥ 3 then we must have µ∅,1 ≥ 1 (see the proof of Proposition 2.3),

and that both β̃ and α̃ J̃,r̃
k,+ are in ÃI+k when α̃ ∈ ÃI . This proves the second assertion.
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Assuming now that the relation between
[

Ĵ
r̂

]
and

[
J̃
r̃

]
from the third assertion holds

for some j, and then r̂ ≥ 1, j ∈ J̃, and the conditions
[

J̃
r̃

]
6=
[ jk

0

]
and

[
Ĵ
r̂

]
6=
[

k
1

]
are equivalent. In this case we unfold the equalities β̃ = α̃

J̃,r̃,j
k,t (namely µJ,r = mk, J̃,r̃,j

t,J,r for

every J and r) and α = β
Ĵ,r̂,j
k,b (which means mJ,r = µ

k, Ĵ,r̂,j
b,J,r wherever |J|+ r ≥ 2) as follows.

Given
[

J
r
]

with |J|+ r ≥ 2, both of them mean that µJ,r = mJ,r when
[

J
r
]

does not equal[
Ĵ
r̂

]
,
[

J̃
r̃

]
, or

[ jk
0

]
; that the equivalent equalities µ Ĵ,r̂ = m Ĵ,r̂ + 1 ≥ 1 and m Ĵ,r̂ = µ Ĵ,r̂ − 1

hold when
[

J
r
]
=
[

Ĵ
r̂

]
; that we have µ J̃,r̃ = m J̃,r̃ − 1 i.e., m J̃,r̃ = µ J̃,r̃ + 1 ≥ 1, in case[

J
r
]
=
[

J̃
r̃

]
; and that µjk,0 = mjk,0 + 1 ≥ 1, meaning that mjk,0 = µjk,0 − 1, if

[
J
r
]
=
[ jk

0

]
.

As all the required admissibility conditions are deduced from the inequalities in the
process, and the remaining equality µ∅,1 = m∅,1 is now a consequence of the fact that
β̃ and α̃ J̃,r̃

t are in ÃI+k, the third assertion follows.
Proving the fourth assertion is shorter: The equalities β̃ = α̃k,m and α = βk,d both

mean that µJ,r = mJ,r for every vector
[

J
r
]

with |J| + r ≥ 2 that is not
[

k
1

]
, and that

µk,1 = mk,1 + 1 ≥ 1 (yielding the admissibility condition) and mk,1 = µk,1 − 1, and then
having both β̃ and α̃k,m in ÃI+k implies that µ∅,1 = m∅,1. This completes the proof of
the lemma. �

Recalling the Kronecker δ-symbol, we shall also be using the complementary symbol
δi,j = 1− δi,j, yielding 1 when i 6= j and 0 if i = j. We shall also need a truth symbol δS,
which equals 1 when the statement S holds and 0 when it does not. We can now express
yI and yI+k via the formula from Corollary 2.6, and we obtain the following recursive
formula for the coefficients cα appearing there, or more precisely cβ for β ∈ AI+k.

Corollary 3.3. Take β ∈ AI+k for a multiset I with |I| ≥ 2 and 1 ≤ k ≤ N, with multiplicities
{µJ,r}|J|+r≥2. Then the coefficient cβ equals the sum of the expressions

∑| Ĵ|+r̂≥2 δµ Ĵ,r̂,0δk∈ Ĵδ| Ĵ|+r̂,2(µ Ĵ\k,r̂ + 1)c
β Ĵ,r̂

k,−
,

−∑| Ĵ|+r̂≥2 δµ Ĵ,r̂,0 ∑N
j=1 δµjk,0,0δr̂,0δ[ Ĵ

r̂

]
,
[

k
1

](η̂j + 1)(µ Ĵ+j,r̂−1 + 1)c
β

Ĵ,r̂,j
k,b

(where the symbol η̂j is the multiplicity with which j appears in the multiset Ĵ), and−δµk,1,0
(

∑|J|+r≥2 rµJ,r +

∑N
j=1(1 + δj,k)µjk,0

)
cβk,d .

Proof. Following the proof of Corollary 2.6, we write f 2n−1
y yI and f 2n+1

y yI+k, where
n := |I|, with the corresponding multiplicities, and Lemma 1.1 shows that the operator
f 2
y

∂
∂xj
− (2n − 1)∆k fy sends the former to the latter. Take the element β̃ ∈ ÃI+k that

is associated with β, and consider all the contributions involving the corresponding in
that action. Lemma 3.1 implies that these contributions come from the elements α̃ ∈ ÃI

(with corresponding element α ∈ AI as in Lemma 2.5) such that β̃ equals either α̃ J̃,r̃
k,+

for an admissible vector
[

J̃
r̃

]
, or α̃

J̃,r̃,j
k,t for appropriate

[
J̃
r̃

]
and j ∈ J̃, or α̃k,m. Lemma 3.2
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implies that this is equivalent to β̃ being α̃
Ĵ\k,r̂
k,+ where α is the element β Ĵ,r̂

k,− of AI with
Ĵ being a multiset containing k and r̂ being such that | Ĵ|+ r̂ ≥ 3 and µ Ĵ,r̂ ≥ 1, or to β̃

being α̃
Ĵ+j,r̂−1
k,t for α = β

Ĵ,r̂,j
k,b with r̂ ≥ 1, | Ĵ|+ r̂ ≥ 2,

[
Ĵ
r̂

]
6=
[

k
1

]
, µ Ĵ,r̂ ≥ 1, and µjk,0 ≥ 1, or

to β̃ = α̃k,m with α = βk,d in case µk,1 ≥ 1.
The value of cβ is obtained by gathering all of the corresponding contributions from

Lemma 3.1, with the appropriate value of m J̃,r̃, and with the δ and δ symbols presenting
the admissibility conditions. This produces the two sums over | Ĵ|+ r̂ ≥ 2, and in the
term involving cβk,d , Lemma 2.5 expresses the parameter m∅,1 required for completing
βk,d ∈ AI (with |I| = n) to β̃k,d as n− 1−∑|J|+r≥2 mJ,r. Definition 2.4 thus implies that
n− 1−m∅,1 equals ∑|J|+r≥2 rmJ,r + 1, and recalling that for βk,d the parameter mJ,r was
defined to be µJ,r− 1 in case J = {k} and r = 1 and µJ,r in any other case, the coefficient
multiplying cβk,d is the asserted one. This proves the corollary. �

In order to establish the formula for the coefficients from Corollary 2.6, we intro-
duce the notation J! for ∏N

i=1 ηi! when J contains each 1 ≤ i ≤ N with multiplicity
ηi (complementing the notation ( J

K) used in Definition 1.2), and define the following
combinatorial numbers.

Definition 3.4. Consider, inside the set A from Remark 2.7, the element α with multiplicities
{mJ,r}{|J|+r≥2}. We then define the number

Cα :=

(
∑

|J|+r≥2
rmJ,r

)
!

(
∑

|J|+r≥2
mJ,r J

)
!

/
∏
|J|+r≥2

r!mJ,r mJ,r!J!mJ,r .

If α lies in AI,h, where I contains each 1 ≤ i ≤ N with multiplicity νi, then Cα counts the
number of solutions to the following question: Assume that one is given balls in N + 1 colors,
with the last color being red, such that there are h− 1 marked red balls, and for each 1 ≤ i ≤ N
we have νi marked balls. Then Cα counts the number of possibilities of putting the balls in h
identical boxes, such that for every J and r, there are mJ,r boxes that contain r red balls and ηi
balls of the ith color, where ηi is the multiplicity to which J contains i.

As in Faà di Bruno’s formula, as explained in, e.g., [J1], and as in [Z], we have mJ,r!
in the denominator of Cα from Definition 3.4 to represent the fact that the boxes are in
the combinatorial question given there are identical. The coefficients from Definition
3.4 satisfy the following recursive relation.

Proposition 3.5. Assume that β = {µJ,r}{|J|+r≥2} is an element of AI+k for a set I of size
n ≥ 2 and some index 1 ≤ k ≤ N. Then Cβ is the sum of

∑| Ĵ|+r̂≥2 δµ Ĵ,r̂,0δk∈ Ĵδ| Ĵ|+r̂,2(µ Ĵ\k,r̂ + 1)C
β Ĵ,r̂

k,−
,

∑| Ĵ|+r̂≥2 δµ Ĵ,r̂,0 ∑N
j=1 δµjk,0,0δr̂,0δ[ Ĵ

r̂

]
,
[

k
1

](η̂j + 1)(µ Ĵ+j,r̂−1 + 1)C
β

Ĵ,r̂,j
k,b
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(where again η̂j denotes the multiplicity of j in Ĵ), and the two expressions δµk,1,0 ∑N
j=1(1 +

δj,k)µjk,0Cβk,d and δµk,1,0 ∑|J|+r≥2 rµJ,rCβk,d .

As in [Z], the two multiples of Cβk,d will play different roles in the proofs of Propo-
sition 3.5, both the one immediately following and the combinatorial one given after
Theorem 3.6 below.

Proof. By setting h := ∑|J|+r≥2 µJ,r, we find that β ∈ AI+k,h, and all the asserted terms
involve, by Lemma 3.2, coefficients Cα for elements α ∈ AI . Assume first that Ĵ
is a multiset containing k and that r̂ is a number for which we have | Ĵ| + r̂ ≥ 3
and µ Ĵ,r̂ ≥ 1, meaning that the δ-symbols do not vanish for the corresponding sum-

mand in the first asserted sum. The fact that in the definition of β Ĵ,r̂
k,− we subtract 1

from µ Ĵ,r̂, add 1 to µ Ĵ\k,r̂, and change nothing more (compared to β) means that the

sum ∑|J|+r≥2 µJ,r, or equivalently ∑|J|+r≥2 rµJ,r, remains unchanged, and thus β Ĵ,r̂
k,− ∈

AI,h. The contribution of the corresponding summand is therefore µ Ĵ\k,r̂ + 1 times

(h− 1)!I!
/

∏|J|+r≥2 µk, Ĵ,r̂
−,J,r!(r!J!)µk, Ĵ,r̂

−,J,r . Substituting the µk, Ĵ,r̂
−,J,r’s, we get that the total power

of each r! in the denominator, as well as that of the ηi’s for i 6= k that form the expres-
sion J! (which are the same for Ĵ and Ĵ \ k), are the same as for Cβ, and so are the other
parts of the denominator that arise from vectors

[
J
r
]

that do not equal
[

Ĵ
r̂

]
or
[

Ĵ\k
r̂

]
.

Combining the remaining parts of the denominator, in which η̂k is the multiplicity of k
in Ĵ (and thus the multiplicity in Ĵ \ k is η̂k − 1), with the external multiplier yields

µ Ĵ\k,r̂ + 1

(η̂k−1)!µ Ĵ\k,r̂+1(µ Ĵ\k,r̂+1)!η̂k!µ Ĵ,r̂−1(µ Ĵ,r̂−1)!
=

η̂kµ Ĵ,r̂

(η̂k−1)!µ Ĵ\k,r̂ µ Ĵ\k,r̂!η̂k!µ Ĵ,r̂ µ Ĵ,r̂!
,

meaning that for such Ĵ and r̂ the total expression equals
η̂kµ Ĵ,r̂
νk+1 Cβ (the denominator

here arising from the numerator in Definition 3.4 for Cβ containing (νk + 1)! instead of
our νk!). Noting that the vanishing of δµ Ĵ,r̂,0δk∈ Ĵ is equivalent to that of the numerator

η̂kµ Ĵ,r̂, only the restriction | Ĵ|+ r̂ ≥ 3 from the multiplier δ| Ĵ|+r̂,2 remains meaningful. It

follows that these terms contribute
Cβ

νk+1 ∑| Ĵ|+r̂≥3 η̂kµ Ĵ,r̂ in total.
We now take some 1 ≤ j ≤ N with µjk,0 ≥ 1, and consider r̂ ≥ 1 and a multi-

set Ĵ, with
[

Ĵ
r̂

]
6=
[

k
1

]
, for which | Ĵ| + r̂ ≥ 2 and µ Ĵ,r̂ ≥ 1 (so that the correspond-

ing δ-symbols do not vanish), and write η̂j for the multiplicity of j in Ĵ (so that its
multiplicity in Ĵ + j is η̂j + 1). We have h ≥ 2 under these conditions, and since for

β
Ĵ,r̂,j
k,b we subtract 1 from µjk,0 and µ Ĵ,r̂ and add 1 to µ Ĵ+j,r̂−1, we obtain that this el-

ement lies in AI,h−1. The corresponding contribution is (η̂j + 1)(µ Ĵ+j,r̂−1 + 1) times

(h − 2)!I!
/

∏|J|+r≥2 µ
k, Ĵ,r̂,j
b,J,r !(r!J!)µ

k, Ĵ,r̂,j
b,J,r . The denominators arising from any vector

[
J
r
]
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other than
[

Ĵ
r̂

]
,
[ Ĵ+j

r̂−1

]
, or

[ jk
0

]
are the same ones as in Cβ, and so are the powers of ηi!

for i 6= j from J! in the first two among the remaining vectors. The external multiplier
and the remaining parts of the denominator give

(η̂j + 1)(µ Ĵ+j,r̂−1 + 1)
/
(1 + δj,k)

µjk,0−1(µjk,0 − 1)!

[(η̂j + 1)!(r̂− 1)!]µ Ĵ+j,r̂−1+1
(µ Ĵ+j,r̂−1 + 1)![η̂j!r̂!]µ Ĵ,r̂−1(µ Ĵ,r̂ − 1)!

in total. This amounts to (1 + δj,k)µjk,0r̂µ Ĵ,r̂ over the parts of the denominator of Cβ that
are associated with our three vectors, and recalling the numerator of Cβ, the contribu-

tion of such an element is
(1+δj,k)µjk,0r̂µ Ĵ,r̂
(νk+1)(h−1) Cβ. Summing over Ĵ, r̂, and j, and observing

that the vanishing of δµ Ĵ,r̂,0δµjk,0,0δr̂,0 is implied by the corresponding vanishing of the

numerator (but not the one of the δ associated with the restriction
[

Ĵ
r̂

]
6=
[

k
1

]
), the sum

over these elements equals ∑N
j=1

(1+δj,k)µjk,0Cβ

(νk+1)(h−1) ∑[ Ĵ
r̂

]
6=
[

k
1

] r̂µ Ĵ,r̂.

It remains to consider, when µk,1 ≥ 1 (and thus h ≥ 2 once more), the two terms in-
volving Cβk,d , which lies in AI,h−1 due to the subtraction of 1 from µk,1. These terms are

∑N
j=1(1 + δj,k)µjk,0 and ∑|J|+r≥2 rµJ,r = h − 1 times (h − 2)!I!

/
∏|J|+r≥2 µk

d,J,r!(r!J!)µk
d,J,r .

All the denominators other than the one arising from
[

J
r
]
6=
[

k
1

]
coincide with those

appearing in Cβ, and as the remaining one is the multiplier 1
(µk,1−1)! =

µk,1
µk,1! for Cβk,d and

1
µk,1! in Cβ, the same numerator considerations identify our terms as ∑N

j=1
(1+δj,k)µjk,0µk,1
(νk+1)(h−1) Cβ

and
µk,1Cβ

νk+1 , with the symbol δµk,1,0 becoming redundant because of the multiplier µk,1.

We therefore have to consider
Cβ

νk+1 ∑| Ĵ|+r̂≥3 η̂kµ Ĵ,r̂ plus

N

∑
j=1

(1 + δj,k)µjk,0Cβ

(νk + 1)(h− 1) ∑[
Ĵ
r̂

]
6=
[

k
1

] r̂µ Ĵ,r̂ +
N

∑
j=1

(1 + δj,k)µjk,0µk,1

(νk + 1)(h− 1)
Cβ +

µk,1Cβ

νk + 1
,

involving four terms. Noting that µk,1 in the third term is just the summand r̂µ Ĵ,r̂ for

the missing vector
[

Ĵ
r̂

]
=
[

k
1

]
in the second term, and together the sum ∑| Ĵ|+r̂≥2 r̂µ Ĵ,r̂

equals h− 1 via Definition 2.4 and Remark 2.7, the jth summand in the sum of those two

terms equals just
(1+δj,k)µjk,0Cβ

νk+1 . But the multiplier of
Cβ

νk+1 here is η̂kµ Ĵ,r̂ for
[

Ĵ
r̂

]
=
[ jk

0

]
,

the multiplier µk,1 in the fourth term is the one associated with
[

Ĵ
r̂

]
=
[

k
1

]
, and for any

other vector
[

Ĵ
r̂

]
with | Ĵ|+ r̂ = 2 we have η̂k = 0 and therefore no contribution. It means

that the total expression is
Cβ

νk+1 ∑| Ĵ|+r̂≥2 η̂kµ Ĵ,r̂, and the sum equals νk + 1, thus canceling
the denominator, for β ∈ AI+k by Definition 2.4. This proves the proposition. �

We can now prove the following explicit formula.
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Theorem 3.6. For every element α in the set AI from Definition 2.4, where I is the multiset
containing each 1 ≤ i ≤ N with multiplicity νi, of size ∑N

i=1 νi ≥ 2, let Cα be the constant from

Definition 3.4. Then the expression ∏|J|+r≥2(∆J fyr)mJ,r
/

f
n+∑|J|+r≥2 mJ,r
y corresponding to α in

the expression for yI in Corollary 2.6 comes multiplied by the coefficient (−1)∑|J|+r≥2 mJ,r Cα, i.e.,
we have the formula

yI = ∑
α∈AI

(−1)∑|J|+r≥2 mJ,r
(

∑|J|+r≥2 rmJ,r
)
!I!

∏|J|+r≥2 r!mJ,r mJ,r!J!mJ,r
·

∏|J|+r≥2(∆J fyr)mJ,r

f
n+∑|J|+r≥2 mJ,r
y

.

Proof. Having the formula from Corollary 2.6 at hand, we only need to prove the equal-
ity cα = (−1)∑|J|+r≥2 mJ,r Cα for every α ∈ AI . We saw that when |I| = 2, the set AI
consists of a unique element, in AI,1, in which mJ,r equals 1 when J = I and r = 0 and
0 otherwise, with Cα = 1 in Definition 3.4, and the formula from Equation (2) yields
the desired result. We therefore assume, by induction, that the statement holds for
every α ∈ AI , take some 1 ≤ k ≤ N, and wish to prove the formula for an element
β = {µJ,r}{|J|+r≥2} of AI+k (this will clearly establish the result by induction for every
multiset I). Corollary 3.3 expresses cβ as a combination of coefficients cα for α ∈ AI ,

and note that if β ∈ AI+k,h for some h then if β Ĵ,r̂
k,− is defined then it is in AI,h and the

corresponding contribution from that corollary is with a + sign, but when an element

β
Ĵ,r̂,j
k,b or βk,d is defined, it belongs to AI,h−1 and yields a contribution with a − sign.

The induction hypothesis allows us to write cα as (−1)hCα or (−1)h−1Cα (according to
whether our α is in AI,h or in AI,h−1), with Cα from Definition 3.4, and then (−1)hcβ be-
comes the formula from Proposition 3.5. As this proposition compares that expression
with Cβ, we obtain the desired formula. This proves the theorem. �

Note that the formula from Theorem 3.6 is indeed symmetric, in the sense that if we
apply a permutation to the indices 1 ≤ i ≤ N that keeps I invariant, the expression for
yI remains invariant under this operation (as it should be).

For examining Theorem 3.6, let us consider the formulae that we have for I of size
n = 3 or n = 4. In the former case the explicit formula is given in Equation (6), and
we saw that in this case AI,1 consists of a single element in which mI,0 = 1 and the
other multiplicities vanishing, while AI,2 contains one element with mi,1 = mI\i,0 = 1
and the other mJ,r’s vanishing, for every i ∈ I. Now, Definition 3.4 assigns the value 1
to the element of AI,1, and one can verify that it associates 1 to an element of AI,2 with
i 6∈ I \ i, 2 when i ∈ I \ i but I 6= {i, i, i}, and 3 in case I = {i, i, i}. As this coincides
with the number of summands in Equation (6) that contribute 1 to ∆i fy · ∆I\i f , this
equation is indeed in correspondence with Theorem 3.6. When n = 4 and I is a set,
with no multiplicities, the set AI was seen to consist of the following elements: AI,1
has only the element with mI,0 = 1 (every multiplicity without a written value is meant
to vanish); In AI,2 there are the 4 elements with mi,1 = mI\i,0 = 1 and the 6 elements
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in which mJ,1 = mI\J,0 = 1 for a subset J ⊆ I of size 2; And AI,3 contains 3 elements
having mJ1,0 = mJ2,0 = m∅,2 = 1 for unordered partition of I into two sets of size 2, as
well as 6 elements with mJ,0 = 1 and mi,1 = 1 for the two elements i ∈ I \ J. Now, in
Definition 3.4, the νi’s from I!, the ηi’s from J!, and the mJ,r’s are all 0 or 1, so that the
coefficient Cα is just (h − 1)!/ ∏J,r r!mJ,r , and since this gives 2 for the second type of
elements in AI,3 and 1 for all the rest, Equation (9) is indeed the incarnation of Theorem
3.6 for this case (one can verify that when some of the elements of a multiset I of size 4
coincide, the identification of elements in Equation (9) and the resulting coefficients in
Definition 3.4 indeed match one another for such a case as well, as Remark 4.5 below
predicts).

The coefficients Cα from Definition 3.4 have a combinatorial interpretation, meaning
that Proposition 3.5 (and thus also Theorem 3.6) should have a combinatorial proof as
well. We now present this proof, which parallels the one we already gave, but from
the combinatorial viewpoint. Take β ∈ AI+k,h, which we again write as {µJ,r}{|J|+r≥2},
where the multiplicity of i in I is νi. Recall that Cβ counts the number of ways to put
a collection of marked balls, with νi + δi,k of the ith color and h − 1 red ones, into h
identical boxes, under the restriction that if J is a multiset containing each index i with
multiplicity ηi then the number of boxes containing ηi balls of the ith color and r red
ones is µJ,r. We investigate this set of possibilities according to solutions of a similar
problem with the elements of AI that show up in Proposition 3.5, recalling that we only
allow boxes containing at least two balls (of any mixture of colors).

Consider the ball of the kth color, with the marking νk + 1. In some possibilities it
will lie in a box containing at least 3 balls, i.e., the content of the corresponding box is
described by ( Ĵ

r̂), with k ∈ Ĵ and with | Ĵ|+ r̂ ≥ 3. Taking the ball νk + 1 out yields a

solution to the problem of possibilities for β Ĵ,r̂
k,−. Conversely, for every solution for β Ĵ,r̂

k,−
we can get a possibility for β by adding the ball νk + 1 to any of the boxes with ball

content ( Ĵ\k
r̂ ), and the number of such boxes is µk, Ĵ,r̂

−, Ĵ\k,r̂
= µ Ĵ\k,r̂ + 1. The first term in

Proposition 3.5 therefore counts all the possibilities for β where the ball νk + 1 sits with
at least two other balls in its box.

The next possibilities that we focus on are those where the ball νk + 1, of the kth color,
shares its box with a single other ball, which is red. Then µk,1 ≥ 1 and thus h ≥ 2, and
the red ball can have any of the h− 1 markings. Removing the entire box produces a
solution for the question associated with βk,d (with the markings of the red balls being
the complement of the one in the box we took out), and for any of the h− 1 possible
red markings, and any such solution for βk,d with the chosen red marking missing, we
can add a box with the chosen missing red ball and our ball νk + 1, and get a possibility
for β. This means that the fourth term in Proposition 3.5 (where we recall that the sum
in this term equals h− 1) involves precisely those possibilities for β in which νk + 1 is
one of two balls in a box, and the other ball in that box is red.
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It remains to count the possibilities in which the ball νk + 1 has only one box-mate,
and this box-mate is not red, but rather of the jth color. In this case µjk,0 ≥ 1, so that
h ≥ 2 once again because β ∈ AI+k,h and n = |I| ≥ 2. Taking out the box will not give
a solution for an element of AI , so that in order to obtain such a solution, we remove
our ball νk + 1 and the red ball h − 1 (and the box), and put the box-mate of νk + 1
in the place of the red ball h− 1. The box containing the red ball h− 1 is associated
with Ĵ and r̂ such that | Ĵ|+ r̂ ≥ 2 (as always) and r̂ ≥ 1 (due to the existence of the
red ball h− 1), and as the box-mate of νk + 1 is of the jth color, after this operation the
box of h− 1 will now be associated with

[ Ĵ+j
r̂−1

]
. Moreover, the removal of the box itself

means that we took out a box corresponding to
[ jk

0

]
, so that after this process we get

a solution for the problem corresponding to β
Ĵ,r̂,j
k,b when

[
Ĵ
r̂

]
6=
[

k
1

]
, and to βk,d in case[

Ĵ
r̂

]
=
[

k
1

]
. On the other hand, from Ĵ and r̂ with

[
Ĵ
r̂

]
6=
[

k
1

]
and a solution to the

question for β
Ĵ,r̂,j
k,b , for producing a possibility for β we choose a box corresponding to[ Ĵ+j

r̂−1

]
(of which there are µ

k, Ĵ,r̂,j
b, Ĵ+j,r̂+1

= µ Ĵ+j,r̂+1 + 1), and a ball of color j in it (and there

are η̂j + 1 of those, when the set is Ĵ + j), and we replace this ball by the red ball h− 1
and take an extra box to put that ball and our ball νk + 1 in it. Similarly, with solution
for the problem for βk,d we do the same for Ĵ = {k} and r̂ = 1, so that we take a box
with a ball of color k and a ball of color j (there are µk

d,jk,0 = µjk,0 of those), take a ball of
color j in it (of which there are 1 + δj,k), and carry out the same process of replacement
and an extra box. It means that the jth summand in the third term in Proposition 3.5
counts the possibilities for β in which our ball νk + 1 is in a box with only one ball, of
the color j, and the red ball h− 1 is in a box with a single box-mate of color k, and the
jth summand in the second term in that proposition accounts for the possibilities for
β where νk + 1 still has a single box-mate of color j, and the red ball h− 1 sits in any
other type of box.

Thus, for understanding the combinatorial meaning of the proof of Proposition 3.5,
we note that in the possibilities for β, the ball of color k and marking νk + 1 can lie
either in a box associated with

[
Ĵ
r̂

]
for which k ∈ Ĵ and | Ĵ| + r̂ ≥ 3 (assuming that

µ Ĵ,r̂ ≥ 1), or in a box of type
[

k
1

]
if µk,1 ≥ 1, or in a box corresponding to

[ jk
0

]
for some

j when µjk,0 ≥ 1 (this accounts for all the possible pairs
[

Ĵ
r̂

]
with | Ĵ|+ r̂ ≥ 2 and k ∈ Ĵ).

When the third option occurs we have h ≥ 2, and the red ball h− 1 can either belong
to a box associated with

[
k
1

]
(in case µk,1 ≥ 1 again), or in any other type

[
Ĵ
r̂

]
6=
[

k
1

]
of

box, provided that µ Ĵ,r̂ ≥ 1, | Ĵ|+ r̂ ≥ 2, and r̂ ≥ 1 (as the box contains a red ball). As it
is clear that these options are mutually exclusive, and we saw that each of these options
produces a number of possibilities that is the appropriate multiple of the number of

solutions for the question associated with the corresponding α ∈ AI (this α was β Ĵ,r̂
k,−,
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βk,d, βk,d once more, and β
Ĵ,r̂,j
k,b respectively), this completes the combinatorial proof of

Proposition 3.5, and consequently of Theorem 3.6 as well.

4. The Meaning of the Expressions ∆J fyr

The expression for yI in Theorem 3.6 simplifies under the assumption that fi = 0 for
every 1 ≤ i ≤ N. Then, in the sum defining ∆J g in Definition 1.2, all the summands

in which K is not the empty multiset vanish, so that ∆J g reduces to gJ f |J|y , and in

particular we have ∆J fyr = f Jyr f |J|y for every J and r. Substituting these into Theorem

3.6, and cancelling the product over all J and r of the powers f |J|mJ,r
y with f n

y from the
numerator (since ∑J,r |J|mJ,r = |I| = n), yields the formula

(10) yI = ∑
α∈AI

(−1)∑|J|+r≥2 mJ,r
(

∑|J|+r≥2 rmJ,r
)
!I!

∏|J|+r≥2 r!mJ,r mJ,r!J!mJ,r
·

∏|J|+r≥2 f mJ,r
Jyr

f
∑|J|+r≥2 mJ,r
y

.

As I am not aware of a publication containing the partial derivative analogue of Theo-
rem 2 of [J3] or of Equation (7) of [Wi] in this generality (Equation (2.9) of [Y] is close to
such a formula, but under some restrictions on the value of fy), it seems that Equation
(10), in this setting is also new. It will also be a special case of Theorem 4.2 below, which
can be proved in a manner similar to that from [J3] or from [Wi], with our notation. We
will prove it, however, using the adaptation of the argument from [Z].

To do so, let { fi(~x0, y0)}N
i=1 be arbitrary yet again, and define the function ϕ, also of

N + 1 variables, by setting ϕ(~x, z) := f (~x, z+~λ ·~x) for a vector ~x and another variable z,
where~λ is a vector (λ1, . . . , λN) ∈ RN and~λ ·~x is the standard scalar product ∑N

i=1 λixi.
For z0 = y0 −~λ · ~x0 the derivative of ϕ with respect to z yields ϕz(~x0, y0 −~λ · ~x0) =
fy(~x0, y0) 6= 0, meaning that z can be given as a function of ~x in a neighborhood of
~x0 by the equation ϕ(~x, z) = 0 (and the initial condition z(~x0) = z0 = y0 −~λ · ~x0).
It is now clear that with z thus defined and y given in terms of f (~x, y) = 0 we have
y(x) = z(x) +~λ · (~x − ~x0). Differentiating with respect to xi produces the equality
ϕi = fi + λi fy for every 1 ≤ i ≤ N, and therefore if we consider the derivatives of f at
(~x0, y0) and choose each λi to be yi(~x0) = − fi

fy
, then we obtain zi(~x0) = 0 for every i.

We can now prove the following relation.

Lemma 4.1. For this choice of ~λ we get ϕJzr = ∆J fyr / f |J|y for every multiset J and integer
r ≥ 0.

Proof. It is clear (e.g., by induction on r) that ϕzr(~x, z) = fyr(~x, y) under the relation
y = z +~λ · (~x − ~x0). When applying a derivative with respect to some xi, we get
ϕizr(~x, z) = fiyr(~x, y) + λi fyr+1(~x, y). By doing it repeatedly, with the various indices
1 ≤ i ≤ N, according to the respective multiplicities ηi, and using the binomial identity
in the part of ( J

K) that corresponds to the index of differentiation, we obtain by induction
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that ϕJzr equals ∑K⊆J(−1)|K|( J
K) f(J\K)yr+|K| ·∏i∈K λi. Recalling the value − fi

fy
of λi, this

is indeed obtained from the sum from Definition 1.2, in which we take g to be fyr , after

division by f |J|y . This proves the lemma. �

Using Lemma 4.1, knowing that the formula from Equation (10) (in which elementary
derivatives of f appear, and not the heavier combinations from Definition 1.2) is valid
when the first derivatives yi, 1 ≤ i ≤ N of y vanish at ~x0, yields the general formula
given in Theorem 3.6. To see this, we define z in terms of ϕ as above, with the values of
the λi’s with which zi(~x0) = 0 for every i, and then Equation (10) gives the expression
for zI using the derivatives of ϕ with respect to the variables xi, 1 ≤ i ≤ N, and z.
The fact that the difference between y and z is a linear function of ~x implies that yI
is the same as zI when |I| ≥ 2, but we need it in terms of the derivatives of f and
not ϕ. Lemma 4.1 does the required transformation (including replacing every ϕz in
the denominator by fy), and as the total denominator will also contain fy raised to the
power ∑J,r |J|mJ,r = |I| = n, the the formula from Theorem 3.6 follows.

Theorem 17 of [Z] reproduces, in the case of an implicit function of one variable,
the formula for y(n) from [J3] and [Wi], which contains just the products of partial
derivatives of f , without the vanishing assumption. We now aim to state and prove
this formula in our setting. Thus, in analogy to Definition 2.4, we let BI be the set of
multiplicities {sH,t}H,t, taken over multisets H and integers t ≥ 0, such that the equality
∑H,t sH,tH = I is satisfied as multisets and we have ∑H,t(t− 1)sH,t = −1 as numbers,
as well as s∅,0 = s∅,1 = 0 (adding si,0 = 0 for every 1 ≤ i ≤ N to elements of AI shows
that AI ⊆ BI , but the inclusion is typically strict, as si,0 are allowed to be positive in
elements of BI). The same idea from Remark 2.7 partitions BI as

⋃
g BI,g, where the

index g for which an element {sH,t}H,t ∈ BI lies in BI,g is ∑H,t sH,t. Once again we
immediately have g ≥ 1, and note that if |I| = n then ∑|H|+t≥2(|H|+ t)sH,t is bounded
from below by 2 ∑|H|+t≥2 sH,t = 2

(
g−∑N

i=1 si,0
)

but equals n + g− 1−∑N
i=1 si,0, and as

∑N
i=1 si,0 ≤ ∑H,t |H|sH,t = |I| = n, we obtain that the union goes over 1 ≤ g ≤ 2n− 1.
We also set B to be the union

⋃
|I|≥1 BI (a disjoint union, since I is determined as the

multiset sum ∑H,t sH,tH of an element of B), where for a singleton I = {i} the set Bi is
not empty, but rather consisting of the single element in which si,0 = 1 and the other
multiplicities vanish (but B∅ is empty). Analogously to Definition 3.4, we set

(11) Dγ :=

(
∑
H,t

tsH,t

)
!

(
∑
H,t

sH,tH

)
!

/
∏
H,t

t!sH,t sH,t!H!sH,t

for any γ ∈ B, with a similar combinatorial meaning. For proving the formula for yI
using products of partial derivatives of f , one can establish an analogue of Corollary 2.6

stating that yI = ∑γ={sH,t}H,t∈BI

[
dγ ∏H,t f sH,t

Hyt

/
f ∑H,t sH,t
y

]
, and the main result is that for

γ ∈ BI,g the coefficient dγ equals (−1)gDγ (note that this covers the case with I = {i},
hence |I| = 1, where we already know that yi = − fi

fy
, since the unique element γ of
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Bi = Bi,1 satisfies Dγ = 1 via Equation (11), and hence dγ = −1). We express this result
as follows.

Theorem 4.2. For every multiset I, of size n ≥ 1, we have the equality

yI =
2n−1

∑
g=1

∑
γ={sH,t}H,t∈BI,g

(−1)gDγ

f g
y

∏
H,t

f sH,t
Hyt ,

where the coefficient Dγ is the one from Equation (11).

The expression from Theorem 4.2 has the same required symmetry property that was
mentioned after Theorem 3.6, namely invariance under permutations that preserve I.

Now, Theorem 4.2 can be proved by induction, using an analogue of Proposition
3.5 that is suitable for the action of differentiation on such expressions (such a direct
proof of Theorem 17 of [Z], i.e., in the case of ordinary derivatives, is detailed in [Wi]),
but we will prove it, for |I| ≥ 2, using Theorem 3.6 (and we already mentioned that
the case where |I| = 1 is the known, classical formula). Considering an element γ =
{sH,t}H,t ∈ B, let Zγ be the set of all collections of numbers {qH,t,K}|H|+t≥2,|K|≤t satisfy-
ing ∑|K|≤t qH,t,K = sH,t for every H and t with |H|+ t ≥ 2, as well as ∑|H|+t≥2 ∑|K|≤t κiqH,t,K =
si,0 for every 1 ≤ i ≤ N, where κi is the multiplicity of i in the multiset K. We comple-
ment the notation J! and ( J

K) for multisets by writing ( t
K) for the multinomial coefficient

( t
κ1,...,κN

) = t!
(t−|K|)! ∏N

i=1 κi!
= t!

K!(t−|K|)! (which vanishes unless t ≥ |K|), and prove the

following lemma.

Lemma 4.3. The formula for yI in Theorem 3.6 expands, in terms of the derivatives fHyt and
the explicit expression {sH,t}H,t for elements γ ∈ BI,g, to yield the sum over 1 ≤ g ≤ 2n− 1
of the sum over γ ∈ BI,g of[

(−1)g(g−∑N
i=1 si,0−1

)
!I!

∏H,t(t!H!)sH,t
× ∑
{qH,t,K}H,t,K∈Zγ

∏
|K|≤t

1
qH,t,K!

(
t
K

)qH,t,K
]

∏H,t f sH,t
Hyt

f g
y

.

Proof. Write each expression ∆l fyr from Theorem 3.6 via Definition 1.2. Then the Multi-
nomial Theorem expresses it mJ,rth power as the sum over all collections of num-
bers {q̃J,r,K}K⊆J satisfying ∑K⊆J q̃J,r,K = mJ,r of the product ∏K⊆J

[
(−1)|K|( J

K)g(J\K)y|K| ·

∏i∈K fi · f |J|−|K|y ]q̃J,r,K times the multinomial coefficient mJ,r!
/

∏K⊆J q̃J,r,K!. We take the
exponents {mJ,r}{|J|+r≥2} to be an element α from the set AI,h from Remark 2.7, multi-
ply our expressions over J and r, and multiply further by the coefficient cα = (−1)hCα

from Theorem 3.6 and Definition 3.4. The factors mJ,r! cancel, and when we expand
each ( J

K) as ∏N
i=1 (

ηi
κi
) (using the respective multiplicities of i), then the powers of ηi!

forming J! also cancel for every 1 ≤ i ≤ N (but the products of κi! and of (ηi − κi)!
merge to K! and (J \ K)! respectively). As the product of the expressions f |J|y cancels
with f n

y from the denominator, and the power mJ,r of r! in the denominator of Cα (or

Online Journal of Analytic Combinatorics, Issue 18 (2023), #06



26 SHAUL ZEMEL

cα) is ∑K⊆J q̃J,r,K, we deduce that in the term corresponding to α, the summand arising
from the collection {q̃J,r,K}K⊆J is

(12)
(h− 1)!I! ∏N

i=1 f ∑J,r,K κi q̃J,r,K
i

(−1)h+∑J,r,K |K|q̃J,r,K f
h+∑J,r,K |K|q̃J,r,K
y

∏
|J|+r≥2

∏
K⊆J

f q̃J,r,K

(J\K)yr+|K|/q̃J,r,K!(
r!K!(J \ K)!

)q̃J,r,K
,

where each triple sum ∑J,r,K stands for ∑|J|+r≥2 ∑K⊆J . Now, Equation (12) does not
contain the parameters mJ,r of α, meaning that when we take the sum over α ∈ AI,h
we obtain the sum of the expression from that equation over all collections of numbers
{q̃J,r,K}|J|+r≥2,K⊆J that satisfy the equalities ∑J,r,K q̃J,r,K = h, ∑J,r,K rq̃J,r,K = h − 1, and
∑J,r,K ηiq̃J,r,K = νi for each 1 ≤ i ≤ N (i.e., ∑J,r,K q̃J,r,K J = I).

Now, for each {q̃J,r,K}|J|+r≥2,K⊆J , the exponent of fi in Equation (12) is ∑J,r,K κiq̃J,r,K,
and we therefore separate our set of collections according to the value si,0 of this sum,
for each 1 ≤ i ≤ N. This (non-negative) value is bounded by ∑J,r,K ηiq̃J,r,K = νi, and
note that the exponent showing up twice in the denominator is just ∑N

i=1 si,0, which thus
lies between 0 and n. We recall as well that for the total expression from Theorem 3.6 we
also need to sum over 1 ≤ h ≤ n− 1. We shall write H for the multiset difference J \ K
and t for r+ |K|, so that |H|+ t = |J|+ r ≥ 2 and K satisfies |K| ≤ t, and we denote each
number q̃J,r,K = q̃H+K,t−|K|,K as just qH,t,K. As summing over J, r, and K is the same
as summing over H, t, and K (and the total sum ∑H,t,K means ∑|H|+t≥2 ∑|K|≤t), the
restrictions on the numbers in the collection in this notation become ∑H,t,K qH,t,K = h,
∑H,t,K ρiq̃H,t,K = νi − si,0 (where ρi is the multiplicity of i in H), and ∑H,t,K tqH,t,K =

h + ∑N
i=1 si,0 − 1. We also replace h by g := h + ∑N

i=1 si,0, satisfying 1 ≤ g ≤ 2n − 1,
multiply and divide by t!, and gather the corresponding factorials into the binomial
coefficient ( t

K), and then Equation (12), written in terms of a collection {qH,t,K}H,t,K
satisfying the restrictions given by the above equalities, becomes(

g−∑N
i=1 si,0−1

)
!I! ∏N

i=1 f si,0
i

(−1)g f g
y

∏
|H|+t≥2

f
∑|K|≤t qH,t,K

Hyt(
t!H!

)∑|K|≤t qH,t,K ∏
|K|≤t

1
qH,t,K!

(
t
K

)qH,t,K

.

We thus set sH,t := ∑|K|≤t qH,t,K for every H and t with |H|+ t ≥ 2, complete it with
the values for si,0, 1 ≤ i ≤ N from before, and with s∅,0 = s∅,1 = 0 we obtain that
{sH,t}H,t lies in BI,g. Noting that t!H! = 1 where H is a singleton and t = 0, and that
the collections contributing to the expression associated with an element γ ∈ BI,g are
precisely those lying in Zγ, this proves the lemma. �

Our proof of Theorem 4.2 uses the following result.

Proposition 4.4. Assume that for every multiset H and integer t ≥ 0 with |H|+ t ≥ 2 we
have a non-negative integer sH,t such that sH,t = 0 for all but finitely many pairs (H, t). Define
g by the equality ∑|H|+t≥2 tsH,t = g− 1, and assume that for every 1 ≤ i ≤ N we have an
integer si,0 ≥ 0 such that ∑N

i=1 si,0 ≤ g − 1. Then, if γ denotes the full set {sH,t}H,t and
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Zγ is as above, then the sum ∑{qH,t,K}H,t,K∈Zγ ∏|H|+t≥2 sH,t! ∏|K|≤t (
t
K)

qH,t,K/qH,t,K! gives the
multinomial coefficient ( g−1

s1,0,...,sN,0
).

We shall give a combinatorial proof to Proposition 4.4, since an algebraic one seems
hard to establish.

Proof. Assume that we are given g− 1 balls, and that for every H and t with |H|+ t ≥
2 there are tsH,t balls that are marked with H and t (the total sum ∑H,t tsH,t of the
numbers of balls indeed equals g− 1). Assume further that the balls with the markings
H and t arrive packed in sH,t identical boxes, with each box containing t balls. If we
wish to collect N disjoint sets of balls, of respective sizes si,0, 1 ≤ i ≤ N, from these
g− 1 balls (with a remainder of g−∑N

i=1 si,0 balls), then it is known that the number of
ways to do so is ( g−1

s1,0,...,sN,0
). We call this a collection of sets of balls, and the sizes {si,0}N

i=1
of the sets are fixed parameters.

We now count this number of choices in a different way, which is based on the
markings of the balls and their partitions into the boxes. Considering a collection of
sets of balls, a multiset H, and some t with |H|+ t ≥ 2, take K to be a multiset with
multiplicities {κi}N

i=1, and let qH,t,K denote the set of boxes of balls with markings H
and t from which we took precisely κi balls for the ith set. The fact that the sets are
disjoint and there are t balls in every such box means that qH,t,K can be positive only if
|K| ≤ t. Given such a collection of parameters {qH,t,K}H,t,K, the number of possibilities
to choose which qH,t,K of the sH,t boxes are those from which we take balls according
to K is sH,t!

/
∏|K|≤t qH,t,K!, and after determining such a choice, the number of ways

to take κi balls to the ith set for every 1 ≤ i ≤ N from the t balls in each of the qH,t,K
boxes determined for this is ( t

K). The choices over the boxes are independent, yielding
∏|K|≤t (

t
K)

qH,t,K , which we then multiply by previous factor, and as the choices for each
H and t are also independent, this gives the product associated with {qH,t,K}H,t,K. Now,
since from every box with H and t we took some (possibly empty) set of balls, the sum
∑|K|≤t qH,t,K equals the number of such boxes, namely sH,t, and for every 1 ≤ i ≤ N
the sum ∑H,t,K κiqH,t,K equals the number of balls in the ith set, which is si,0. This
means that {qH,t,K}H,t,K lies in Zγ, and since every element of Zγ contributes in this
way, and the contributions count distinct ways to choose the balls, the sum over Zγ of
our expressions indeed yields the multinomial coefficient from the direct answer to this
question. This proves the proposition. �

Theorem 17 of [Z] was already known from [Wi] (and in some sense [J3]). However,
this does not seem to be the case for our Theorem 4.2, in this generality. We therefore
supply its proof.

Proof of Theorem 4.2. Lemma 4.3 already expands the expression from Theorem 3.6 as a
linear combination of the products of partial derivatives of f that are associated with
elements of BI , with the coefficient (−1)g

f g
y

already showing up when the element lies in
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BI,g, as does the part I!
∏H,t(t!H!)sH,t of Dγ from Equation (11). Proposition 4.4 allows us

to replace the sum over Zγ in that lemma by ( g−1
s1,0,...,sN,0

)
/

∏|H|+t≥2 sH,t!. Expanding this

multinomial coefficient, the factor
(

g− ∑N
i=1 si,0 − 1

)
! cancels, and we get the remain-

ing numerator (g− 1)! as well as the missing factorials ∏N
i=1 si,0! in the denominator.

Recalling that if |H|+ t ≤ 1 then either H is a singleton and t = 0 or H is empty and
t ≤ 1, and that in elements of BI the multiplicities s∅,0 and s∅,1 must vanish, this is
indeed the desired expression. This proves the theorem. �

Note that in every product of derivatives that shows up in Theorem 4.2, the total
differentiation with respect to the variables xi, 1 ≤ i ≤ N is given by the multiset I,
and the number of differentiations with respect to y in the numerator is one less that
the power of fy in the denominator. This generalizes the observation from [Z] that is
based on the prediction from [N]. The fact that every term in the expression for ∆J fyr

in Definition 1.2 contains differentiation with respect to the xi’s that are given by J, and
the number of differentiations with respect to y in every such term is r + |J|, means
that the same observation can be drawn also from Proposition 2.2 or Corollary 2.6.

We conclude with the following remark about our coefficients Cα and Dγ from Defi-
nition 3.4 and Equation (11).

Remark 4.5. Recall from Proposition 1 of [H] that the formula for higher partial derivatives of a
product of functions, or of a composition of functions, contain no numerical coefficients when the
variables are all distinct. Moreover, Proposition 2 there states that in more general derivatives
we obtain coefficients only due to formerly distinguishable terms becoming indistinguishable,
and the coefficients count the appropriate number of collapsing partitions (the case from Faà di
Bruno’s formula, of an ordinary derivative, is, of course, a special case of this construction).
Proposition 4 of that reference states that if a multiset I has a multiset partition as ∑K 6=∅ µKK,
then the number of partitions of a set of size |I| that under the identifications that create I
collapse to the partition ∑K 6=∅ µKK is I!

/
∏K µK!K!µK . A similar argument shows that if

we have a marking v of the multiplicities µK, namely µK = ∑v µK,v and in collapsing the
partitions we remember which part belongs to which marking, then the number of partitions
that collapse in the same identifications process is now I!

/
∏K,v µK,v!K!µK,v (this is the previous

expression multiplies by the product over K of the multinomial coefficients µK!
/

∏v µK,v!).
Now, if the multiset I is a set of size |I|, then I! = 1, the multiplicities mJ,r appearing in
Definition 3.4 or sH,t from Equation (11) equal 0 wherever the multiset J or H is not a set
and equal 0 or 1 when it is a non-empty set, meaning that mJ,r!J!mJ,t or sH,t!H!sH,t equal 1
as well unless J or H are empty. In this case the coefficient Cα for α ∈ AI,h reduces to (h−
1)!
/

∏r≥2 m∅,r! ∏|J|+r≥2 r!mJ,r , and for an element γ ∈ BI,g, the coefficient Dγ becomes (g−
1)!
/

∏t≥2 s∅,t! ∏H,t t!sH,t (the products on r or t alone begin with 2 because of the restriction
|J| + r ≥ 2 for the mJ,r’s and s∅,0 = s∅,1 = 0 for the sH,t’s). These can be viewed as the
fundamental parts of the coefficients (unlike the case corresponding to Faà di Bruno’s formula,
they do not always equal 1—see Equation (9) for the first case where the former equals 2). Our
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generalization of Proposition 4 of [H] mentioned here shows that in general, the coefficient Cα

or Dγ is the product of its fundamental part and the corresponding number of partitions that
collapse to the desired one when a set of cardinality |I| gets identified to produce the multiset
I. However, the formula for general coefficients is not more complicated than the formula for
their fundamental parts, which is why it is more natural (unlike in [H]) to consider general
differentiation from the start, rather than begin with differentiation with respect to distinct
variables.
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